Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T02:20:37.906Z Has data issue: false hasContentIssue false

Commensurate and Incommensurate Oxide Structures Related to 2H Perovskite

Published online by Cambridge University Press:  16 February 2011

P. D. Battle
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
G.R. Blake
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
J.C. Burley
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
E. J. Cussen
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
J. Sloan
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
J. F. Vente
Affiliation:
Inorganic Chemistry Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QR, U. K.
J. Darriet
Affiliation:
ICMCB, Château Brivazac, Avenue du Docteur A. Schweitzer, 33608 Pessac cedex, France
F. Weill
Affiliation:
ICMCB, Château Brivazac, Avenue du Docteur A. Schweitzer, 33608 Pessac cedex, France
Get access

Abstract

The magnetic structures of Ca3LiRuO6 and Ca3NaRuO6 have been deduced from powder neutron diffraction data. In each case successive Ru5+ cations in the [001] chains of the Sr4PtO6-like structure are antiferromagnetically coupled, and nearest-neighbour Ru5+ cations in adjacent chains are also antiferromagnetically coupled.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Darriet, J. and Subramanian, M.A., J. Mater. Chem. 5, 543 (1995).Google Scholar
2. Lander, J.J., Acta Crystallogr. 4, 148 (1951).Google Scholar
3. Randall, J.R. and Katz, L., Acta Crystallogr. 12, 519 (1959).Google Scholar
4. Battle, P.D., Blake, G.R., Darriet, J., Gore, J.G., and Weill, F., J. Mater. Chem. 7, 1559 (1997).Google Scholar
5. Battle, P.D., Blake, G.R., Sloan, J., and Vente, J.F., J. Solid State Chem. 136, 103 (1998).Google Scholar
6. Nguyen, T.N., Giaquinta, D.M., and zur-Loye, H.C., Chem. Mater. 6, 1642 (1994).Google Scholar
7. Nguyen, T.N., Lee, P.A., and zur-Loye, H.-C., Science 271, 489 (1996).Google Scholar
8. Darriet, J., Grasset, F., and Battle, P.D., Mater. Res. Bull. 32, 139 (1997).Google Scholar
9. Blake, G.R., Sloan, J., Vente, J.F., and Battle, P.D., Chem. Mater. 10, 3536 (1998).Google Scholar
10. Rietveld, H.M., J. Appl. Crystallogr. 2, 65 (1969).Google Scholar
11. Larson, A.C. and von-Dreele, R.B., General Structure Analysis System (GSAS), Los Alamos National Laboratories, Report LAUR 86-748, 1990.Google Scholar
12. Kageyama, H., Yoshimura, K., and Kosuge, K., J. Solid State Chem. 140, 14 (1998).Google Scholar
13. Aasland, S., Fjellvåg, H., and Hauback, B., Solid State Comm. 101, 187 (1997).Google Scholar
14. Greatrex, R., Greenwood, N.N., Lal, M., and Fernandez, I., J. Solid State Chem. 30, 137 (1979).Google Scholar
15. Battle, P.D., Goodenough, J.B., and Price, R., J. Solid State Chem. 46, 234 (1983).Google Scholar
16. Powell, A.V., Gore, J.G., and Battle, P.D., J. Alloys Comp. 201, 73 (1993).Google Scholar
17. Vente, J.F., Lear, J.K., and Battle, P.D., J. Mater. Chem. 5, 1785 (1995).Google Scholar