Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:40:31.250Z Has data issue: false hasContentIssue false

Combustion Synthesis of Fullerenes

Published online by Cambridge University Press:  15 February 2011

H. Richter
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
A. Fonseca
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
P. A. Thiry
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
J. M. Gilles
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
J. B. Nagy
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
A. A. Lucas
Affiliation:
Institute for Studies in Interface Sciences Facultés Universitaires Notre-Dame de la Paix Rue de Bruxelles, 61 B-5000 Namur, Belgium
Get access

Abstract

The formation of fullerenes by combustion was investigated for nine benzene/oxygen/argon flames, one acetylene/oxygen/argon- and one toluene/oxygen/argon flame burning at 75 mbar. The flame-generated soot was Soxhlet extracted with toluene and the extract analyzed by HPLC. It was shown that the C60/C70 ratio depends on the percentage of argon in the fresh gas mixture, which is directly related to the flame temperature. The use of acetylene and toluene as combustible led also to the formation of fullerenes, the yield in the toluene flame being 3.71% of the generated soot, so that toluene represents a serious alternative to benzene for fullerene fabrication in flames.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2 Krdtschmer, W., Lamb, L. D., Fostiropoulos, K. and Huffman, D. R., Nature 347, 354 (1990).Google Scholar
3 Krätschmer, W., Fostiropoulos, K. and Huffman, D. R., Chem. Phys. Lett. 170, 167 (1990).Google Scholar
4 Allemand, P.- M., Khemani, K. C., Koch, A., Wudl, F., Holczer, K., Donovan, S., Griner, G. and Thompson, J. D., Science 253, 301 (1991).Google Scholar
5 Baum, R. M., Chemical & Engineering News (C&EN), November 22 1993, p. 8.Google Scholar
6 Taylor, R. and Walton, D. R. M., Nature 363, 685 (1993).Google Scholar
7 Baum, R. M., Chemical & Engineering News (C&EN), August 2 1993, p. 3.Google Scholar
8 Shinohara, H., Sato, H., Saito, Y., Takayama, M., Izuoka, A. and Sugawara, T., J. Phys. Chem. 95, 8449 (1991).Google Scholar
9 Parker, D. H., Wurz, P., Chatterjee, K., Lykke, K. R., Hunt, J. E., Pellin, M. J., Hemminger, J. C., Gruen, D. M. and Stock, L. M., J. Am. Chem. Soc. 113, 7499 (1991).Google Scholar
10 Parker, D. H., Chatterjee, K., Wurz, P., Lykke, K. R., Pellin, M. J., Stock, L. M., and Hemminger, J. C., Carbon 30, 1167 1992).Google Scholar
11 Richter, H., Emberson, S. C. and Fonseca, A., Revue de l'Institut Franqais du Pétrole 49, 413 (1994).Google Scholar
12 Chai, Y., Guo, T., Jin, C., Haufler, R. E., Chibante, L. P. F., Fure, J., Wang, L., Alford, J. M. and Smalley, R. E., J. Phys. Chem. 95, 7564 (1991).Google Scholar
13 Chibante, L. P. F., Thess, A., Alford, J. M., Diener, M. D. and Smalley, R. E., J. Phys. Chem. 97, 8696 (1993).Google Scholar
14 Gerhardt, Ph., Loffler, S. and Homann, K. H., Chem. Phys. Letters 137, 306 (1987).Google Scholar
15 Howard, J. B., McKinnon, J. Th., Makarovsky, Y., Lafleur, A. L. and Johnson, M. E., Nature 352, 139 (1991).Google Scholar
16 Kinnon, J. Th. Mac, Bell, W. L. and Barkley, R. M., Combustion and Flame 88, 102 (1992).Google Scholar
17 Howard, J. B., McKinnon, J. Th., Johnson, M. E., Makarovsky, Y. and Lafleur, A. L., J. Phys. Chem. 96, 6657 (1992).Google Scholar
18 Lafleur, A. L., Howard, J. B., Marr, J. A. and Yadav, T., J. Phys. Chem. 97, 13539 (1993).Google Scholar
19 Baum, Th., Löffler, S., Löffler, Ph., Weilmiunster, P. and Homann, K. H., Ber. Bunsenges. Phys. Chem. 96, 841 (1992).Google Scholar
20 Bachmann, M., Griesheimer, J. and Homann, K. H., Chem. Phys. Letters 223, 506 (1994).Google Scholar
21 Pope, Ch. J., Marr, J. A. and Howard, J. B., J. Phys. Chem. 97, 11001 (1993).Google Scholar
22 Pope, Ch. J. and Howard, J. B., Twenty-fifth Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, 1994; in press.Google Scholar
23 Richter, H., Fonseca, A., Emberson, S. C., Gilles, J.-M., Nagy, J. B., Thiry, P. A., Caudano, R. and Lucas, A. A., submitted for publication.Google Scholar
24 Suzuki, T., Nakashima, K. and Shinkai, S., Chemistry Letters, 699 (1994).Google Scholar
25 Atwood, J. L., Koutsantonis, G. A. and Raston, C. L., Nature 368, 229 (1994).Google Scholar
26 Gerhardt, Ph. and Homann, K. H., J. Phys. Chem. 94, 5381 (1990).Google Scholar