Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:40:39.485Z Has data issue: false hasContentIssue false

Combinatorial Materials Development using Gradient Arrays. Sphere Covering Lattice Designs: Designs for Efficient use of Experimental Resources.

Published online by Cambridge University Press:  01 February 2011

James N. Cawse*
Affiliation:
(GE Corporate Research and Development, 1 Research Circle, Niskayuna NY 12309)
Get access

Abstract

Gradient arrays are now common tools in combinatorial chemistry for discovery of new leads to commercial materials. Although the cost per sample has dropped markedly with new high throughput methods, efficient use of experimental resources is still important. Examination of gradient arrays from an informational standpoint suggests that designs which use the concepts of sphere packing and covering will be more efficient than simple gradients. This is especially true in higher dimensional systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Dover, R. B. v.; Schneemeyer, L. F.; Fleming, R. M., Nature (London), 392(1998), 162164.Google Scholar
(2) Schultz, P. G.; Xiang, X.-D.; Goldwasser, I., US Patent 5,985,356 (1999), to Symyx Technologies Univ. CaliforniaGoogle Scholar
(3) Experimental Design for Combinatorial and High Throughput Materials Development; Cawse, J. N., Ed.; John Wiley and Sons: New York, 2002.Google Scholar
(4) Danielson, D.; Devenney, M.; Giaquinta, D. M.; Golden, J. H.; Haushalter, R. C.; McFarland, E. W.; Poojary, D. M.; Reaves, C. M.; Weinberg, H.; Wu, X. D., Science, 279(1998), 837839.Google Scholar
(5) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E., Science, 280(1998), 17351737.Google Scholar
(6) Mallouk, T. E.; Smotkin, E. S. In Handbook of Fuel Cells - Fundamentals, Technology and Applications; Vielstich, W., Lamm, A., Gasteiger, H., Eds.; John Wiley and Sons: Chichester, 2002; Vol. 2, p 334337.Google Scholar
(7) Cornell, J. A. Experiments With Mixtures: Designs, Models, and the Analysis of Mixture Data; 3rd ed.; John Wiley and Sons: New York, 2002.Google Scholar
(8) Cawse, J. N.; Wroczynski, R. In Experimental Design for Combinatorial and High Throughput Materials Development; Cawse, J. N., Ed.; John Wiley and Sons: New York, 2002.Google Scholar
(9) Deem, M. W. In Experimental Design for Combinatorial and High Throughput Materials Development; Cawse, J. N., Ed.; John Wiley and Sons: New York, 2002, p 239276.Google Scholar
(10) Deem, M. W. In Advances in Chemical Engineering; Academic Press: San Diego, CA, 2001; Vol. 26, p in the press.Google Scholar
(11) Falcioni, M.; Deem, M. W., Physical Review E, 61(2000), 59485952.Google Scholar
(12) Conway, J. H.; Sloane, N. J. A. Sphere Packings, Lattices, and Groups; 2nd ed.; Springer-Verlag: New York, 1988; Vol. 290.Google Scholar
(13) Hamprecht, F. A.; Agrell, E. In Experimental Design for Combinatorial and High Throughput Materials Development; Cawse, J. N., Ed.; John Wiley and Sons: New York, 2002, p 277308.Google Scholar
(14) Kepler, J. Ioannis Kepleris Strena, seu, De niue sexangula: Cum priuilegio S. Caes. Maiest. ad annos xv.; Francofvrti ad Moenvm: Apud Godefridum Tampach, 1611.Google Scholar
(15) Kepler, J. The Six-Cornered Snowflake; Oxford University Press: London, 1966.Google Scholar
(16) Hales, T., The Kepler Conjecture, http://www.math.lsa.umich.edu/∼hales/countdown/}. (last accessed March 13, 2001)Google Scholar
(17) Abbott, E. A. Flatland - A Romance in Two Dimensions; Seeley & Co.: London, 1884.Google Scholar
(18) Dickson, T. J., Journal of the Australian Mathematical Society, 6(1966), 179192.Google Scholar
(19) Cawse, J. N., US Patent Application US20030153095 A1 (2003), to General Electric Co., Inc.Google Scholar