Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:24:03.210Z Has data issue: false hasContentIssue false

CMP Compatibility of Partially Cured Benzocyclobutene (BCB) for a Via-First 3D IC Process

Published online by Cambridge University Press:  01 February 2011

J. J. McMahon
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
F. Niklaus
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
R. J. Kumar
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
J. Yu
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
J.Q. Lu
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
R. J. Gutmann
Affiliation:
Focus Center-New York, Rensselaer: Interconnections for Hyperintegration Center for Integrated Electronics Rensselaer Polytechnic Institute, Troy, New York-12180
Get access

Abstract

Wafer-level three dimensional (3D) IC technology offers the promise of decreasing RC delays by reducing long interconnect lines in high performance ICs. This paper focuses on a viafirst 3D IC platform, which utilizes a back-end-of-line (BEOL) compatible damascene-patterned layer of copper and Benzocyclobutene (BCB). This damascene-patterned copper/BCB serves as a redistribution layer between two fully fabricated wafer sets of ICs and offers the potential of high bonding strength and low contact resistance for inter-wafer interconnects between the wafer pair. The process would thus combine the electrical advantages of 3D technology using Cu-to-Cu bonding with the mechanical advantages of 3D technology using BCB-to-BCB bonding.

In this work, partially cured BCB has been evaluated for copper damascene patterning using commercially available CMP slurries as a key process step for a via-first 3D process flow. BCB is spin-cast on 200 mm wafers and cured at temperatures ranging from 190°C to 250°C, providing a wide range of crosslink percentage. These films are evaluated for CMP removal rate, surface damage (surface scratching and embedded abrasives), and planarity with commercially available copper CMP slurries. Under baseline process parameters, erosion, and roughness changes are presented for single-level damascene test patterns. After wafers are bonded under controlled temperature and pressure, the bonding interface is inspected optically using glass-to-silicon bonded wafers, and the bond strength is evaluated by a razor blade test.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tessler, T., in 3rd IC Packaging Technology Exposition and Conference, Japan, 2002.Google Scholar
2. Davis, J. A., Venkatesan, R., Kaloyeros, A., Beylansky, M., Souri, S. J., Banerjee, K., Saraswat, K. C., Rahman, A., Reif, R., Meindl, J., Proceedings of the IEEE, 89, 305, (2001), pp. 305324.Google Scholar
3. Guarini, K.W., Topol, A. W., Ieong, M., Yu, R., Shi, L, Newport, M. R., Frank, D. J., Singh, D. V., Cohen, G. M., Nitta, S. V., Boyd, D. C., O'Neil, P. A., Tempest, S. L., Pogge, H. B., Purushothaman, S., Haensch, W. E., Digest of International Electron Device Meeting, (2002), pp. 943945.Google Scholar
4. Topol, A. W., Furman, B. K., Guarini, K. W., Shi, L., Cohen, G. M., and Walker, G. F., Proceedings of the IEEE ECTC, (2004), pgs. 931938.Google Scholar
5. Morrow, P., Kobrinsky, M. J., Ramanathan, S., Park, C.M., Harmes, M., Ramachandrarao, V., Park, H.M., Kloster, G., List, S., and Kim, S., Advanced Metalization Conference 2004 (in press), (2004).Google Scholar
6. Cheng, K. N., Fan, A., Tan, C. S., and Reif, R., IEEE EDL, Vol. 25, No. 1, (2004), pp. 1012.Google Scholar
7. Lee, K. W., Nakamura, T., One, T., Yamada, Y., Mizukusa, T., Hasimoto, H., Park, K. T., Kurino, H., Koyanagi, M., Proceedings of the IEEE IEDM, (2000), pp. 165168.Google Scholar
8. Burns, J., McIlrath, L., Keast, C., Lewis, C., Loomis, A., Warner, K., Wyatt, P., Proceedings of the IEEE ISSCC, (2001), pg. 268.Google Scholar
9. Lu, J.Q., Cale, T. S., and Gutmann, R. J., Dielectrics for Nanosystems: Materials Science, Processing, Reliability, and Manufacturing, Singh, R., Iwai, H., Tummala, R.R., and Sun, S.C. editors, ECS PV 2004-04, (2004), pp. 312323.Google Scholar
10. McMahon, J. J., Lu, J.Q., Gutmann, R. J., to appear in: Proceedings of the IEEE ECTC, (2005) (in press).Google Scholar
11. Lu, J.Q., Jindal, A., Kwon, Y., McMahon, J. J., Rasco, M., Auger, R., Cale, T. S., and Gutmann, R. J., in Proceedings of IEEE IITC, (2003), pp. 7476.Google Scholar
12. Lu, J.Q., Rajagopalan, G., Gupta, M., Cale, T. S., and Gutmann, R. J., MRS Symposium Proceedings, Vol. 816, (2004), pp. K.7.7.1 to K.7.7.12. Google Scholar
13. Kwon, Y., Ph.D. Thesis, Rensselaer Polytechnic Institute, (2003).Google Scholar
14. Price, D., Gutmann, R. J., and Murarka, S. P.Damascene Copper Interconnects with Polymer ILDs”, Thin Solid Films, 308-309, (1997), pp 523528.Google Scholar
15. Borst, C. L., Thakurta, D. G., Gill, W. N., and Gutmann, R. J., Journal of Electronic Packaging, 124 (4), (2000), pp. 362366.Google Scholar
16. Niklaus, F., Kumar, R.J., McMahon, J.J., Yu, J., Matthias, T., Wimplinger, M., Lindner, P., Lu, J.Q., Cale, T.S., and Gutmann, R.J., MRS Spring Meeting, (2005), in press.Google Scholar
17. Stokich, T., Lee, W., and Peters, R., MRS Symposium Proceedings, Vol. 227, (1991), pp. 103114.Google Scholar