Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T06:57:30.354Z Has data issue: false hasContentIssue false

Cluster-less Plasma CVD Reactor and Its Application to a-Si:H Film Deposition

Published online by Cambridge University Press:  17 March 2011

Masaharu Shiratani
Affiliation:
Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
Kazunori Koga
Affiliation:
Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
Yukio Watanabe
Affiliation:
Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
Get access

Abstract

Even under the conventional device-quality discharge conditions, large amount of clusters are found to exist in silane radio frequency (RF) discharges. The size and density of clusters near the substrate on the grounded electrode are 2 nm and 1011 cm-3, respectively. In order to prevent such clusters from depositing on hydrogenated amorphous silicon (a-Si:H) films, we have developed a cluster-less plasma CVD reactor which can significantly suppress cluster amount by using gas viscous and thermophoretic forces exerted on clusters, and by reducing gas stagnation region. Using the reactor, we have demonstrated deposition of ultra high quality a-Si:H films which have a significantly less concentration of Si-H2 bonds compared to conventional device-quality films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett., 31, 292 (1977).10.1063/1.89674Google Scholar
2. Jelenkovic, B. M. and Gallagher, A., J. Appl. Phys., 82, 1546 (1997).Google Scholar
3. Takai, M., Nishimoto, T., Takagi, T., Kondo, M. and Matsuda, A., J. Non-Cryst. Solids, 266–269, 90 (2000).10.1016/S0022-3093(99)00743-7Google Scholar
4. Shiratani, M., Fukuzawa, T. and Watanabe, Y., Jpn. J. Appl. Phys., 38, 4542 (1999).Google Scholar
5. Koga, K., Matsuoka, Y., Tanaka, K., Shiratani, M. and Watanabe, Y., Appl. Phys. Lett., 77, 196 (2000).10.1063/1.126922Google Scholar
6. Shiratani, M., Maeda, S., Koga, K. and Watanabe, Y., Jpn. J. Appl. Phys., 39, 287 (2000).Google Scholar
7. Matsuoka, Y., Shiratani, M., Fukuzawa, T., Watanabe, Y. and Kim, K. S., Jpn. J. Appl. Phys., 38, 4556 (1999).Google Scholar
8. Shiratani, M. and Watanabe, Y., Rev. Laser Eng., 26, 449 (1998).Google Scholar
9. Shiratani, M., Fukuzawa, T. and Watanabe, Y., Jpn. J. Appl. Phys., 38, 306 (1999).10.1143/JJAP.38.4542Google Scholar
10. Brodsky, M.H., Cardona, M. and Cuomo, J.J., Phys. Rev. B, 16, 3556 (1977).Google Scholar
11. Fang, C.J., Gruntz, K.J., Ley, L., Cardona, M., Demond, F.J., Muller, G. and Kalbitzer, S., J. Non-Cryst. Solids, 35&36, 255 (1980).Google Scholar
12. Langford, A.A., Fleet, M.L., Nelson, B.P., Langford, W.A. and Maley, N., Phys. Rev. B, 45, 13367 (1992).Google Scholar
13. Nakamura, N., Takahama, T., Isomura, M., Nishikuni, M., Yoshida, K., Tsuda, S., Nakano, S., Ohnishi, M. and Kuwano, Y., Jpn. J. Appl. Phys., 28, 1762 (1989).Google Scholar
14. Okamoto, S., Hishikawa, Y. and Tsuda, S., Jpn. J. Appl. Phys., 35, 26 (1996).Google Scholar
15. Takagi, T., Hayashi, R., Ganguly, G., Kondo, M. and Matsuda, A., Thin Solid Films, 345, 75 (1999).10.1016/S0040-6090(99)00067-XGoogle Scholar