Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T04:31:57.891Z Has data issue: false hasContentIssue false

Clustered, Terraced And Mixed Surface Phases Of The Al70Pd21Mn9 Quasicrystal

Published online by Cambridge University Press:  10 February 2011

J. Ledieu
Affiliation:
Surface Science Research Centre, The University of Liverpool, Liverpool L69 3BX, UK
A. W. Munz
Affiliation:
Surface Science Research Centre, The University of Liverpool, Liverpool L69 3BX, UK
T. M. Parker
Affiliation:
Surface Science Research Centre, The University of Liverpool, Liverpool L69 3BX, UK
R. McGrath
Affiliation:
Surface Science Research Centre, The University of Liverpool, Liverpool L69 3BX, UK
R. D. Diehl
Affiliation:
Department of Physics, Penn State University, University Park, PA 16802, USA
D. W. Delaney
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, USA
T. A. Lograsso
Affiliation:
Ames Laboratory, Iowa State University, Ames, IA 50011, USA
Get access

Abstract

The five-fold surface of the Al70 Pd21 Mn9 quasicrystal has been studied using STM, LEED and AES. STM images from surfaces which have been sputtered and annealed to 875 K reveal 20-30 Å protrusions that have been identified by others as Mackay-type clusters. Higher-resolution images reveal substructures in these clusters having dimensions 2-3 Å. Longer annealing times at 875 K produced large areas having flat terraces which were imaged with atomic resolution. The LEED pattern from this surface has sharp spots on a low background, and AES indicates that the surface is deficient in Mn relative to the bulk. For surfaces annealed to 1050 K for less than 2 hours, STM images indicate that cluster and terrace phases coexist, and a third phase having aligned arrays of clusters is identified which appears to be intermediate between the cluster and terrace phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dubois, J. M., Physica Scripta, T49 A, 17 (1993).Google Scholar
[2] Rivier, N., J. Non-Cryst. Solids 153/154, 458 (1993).Google Scholar
[3] Schaub, T. M., Bürgler, D. E., Güntherodt, H. -J. and Suck, J. -B., Phys. Rev. Lett. 73, 1255 (1994).Google Scholar
[4] Schaub, T. M., Bürgler, D. E., Schimdt, C. M., Güntherodt, H. -J., Suck, J. -B., Z. Phys. B 96, 93 (1994).Google Scholar
[5] Schaub, T. M., Bürgler, D. E., Güntherodt, H. -J., Suck, J. B., and Audier, M., Appl. Phys. A 61, 491 (1995).Google Scholar
[6] Schaub, T. M., Bürgler, D. E., Schimdt, C. M., and Güntherodt, H. -J., J. Non-Cryst. Solids 205/207, 748 (1996).Google Scholar
[7] Shen, Z., Stoldt, C. R., Jenks, C. J., and Thiel, P. A (private communication).Google Scholar
[8] Ebert, Ph., Feuerbacher, M., Tamura, N., Wollgarten, M., and Urban, K., Phys. Rev. Lett. 18, 3827 (1996).Google Scholar
[9] Ebert, Ph., Yue, F., and Urban, K., Phys. Rev. B 57, 2821 (1998).Google Scholar
[10] Ledieu, J., Munz, A. W., Parker, T. M., McGrath, R., Diehl, R. D., Delaney, D. W., and Lograsso, T. A., in Proceedings of the 14th international Vacuum Congress (to be published in Surface Science).Google Scholar
[11] Gierer, M., Hove, M. A. Van, Goldman, A. I., Chang, S. -L., Shen, W. Z., Zhang, C. -M., Jenks, C. J., and Thiel, P. A., Phys. Rev. Lett. 78, 467 (1997).Google Scholar
[12] Gierer, M., Hove, M. A. Van, Goldman, A. I., Shen, Z., Chang, S. -L., Pinhero, P. J., Jenks, C. J., Anderegg, J. W., Zhang, C. -M., and Thiel, P. A., Phys. Rev. B 57, 7628 (1998).Google Scholar
[13] Guyot, P., Kramer, P., and Boissieu, M.de, Rep. Prog. Phys. 54, 1373 (1991).Google Scholar
[14] Naumovic', D., Aebi, P., Schlapbach, L., and Beeli, C., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A. I., Sordelet, D. J., Thiel, P. A. and Dubois, J. M. (World Scientific, Singapore, 1997), p.86 Google Scholar
[15] Naumovic', D., Aebi, P., Schlapbach, L., Beeli, C., Lograsso, T. A. and Delaney, D. W., in Proceedings of the 6th International on Quasicrystals, edited by Takeuchi, S. and Fujiwara, T. (World Scientific, Singapore, 1998), p.67.Google Scholar
[16] Naumovic', D., Aebi, P., Beeli, C., and Schlapbach, L., in Proceedings of the 14 th International Vacuum Congress (to be published in Surface Science).Google Scholar
[17] Quasicrystals, A Primer, edited by Janot, C. (Oxford Science, 1992), p. 187.Google Scholar
[18] Delaney, D. W., Bloomer, T. E. and Lograsso, T. A., in New Horizons in Quasicrystals: Research and Applications, edited by Goldman, A. I., Sordelet, D. J., Thiel, P. A. and Dubois, J. M. (World Scientific, Singapore, 1997), p.45.Google Scholar
[19] Jenks, C., Delaney, D. W., Bloomer, T. E., Chang, S. -L., Lograsso, T. A., Shen, Z., Zhang, C. -M. and Thiel, P. A., Applied Surface Science 103 (4), 485 (1996).Google Scholar
[20] Chang, S. -L., Chin, W.B., Zhang, C. -M., Jenks, C. J. and Thiel, P. A., Surface Science 337 (1995) 135.Google Scholar
[21] Mackay, A. L., Acta Cryst. 15, 916 (1962); C.Janot, Phys. Rev. B 53, 181 (1996).Google Scholar