Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:24:45.338Z Has data issue: false hasContentIssue false

Cluster Assembly of Hierarchical Nanostructures

Published online by Cambridge University Press:  21 February 2011

Richard W. Siegel*
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

In the past few years, atom clusters with diameters in the range of 2–20 nm of a variety of materials, including both metals and ceramics, have been synthesized by evaporation and condensation in high-purity gases and subsequently consolidated in situ under ultrahigh vacuum conditions to create nanophase materials. These new ultrafine-grained materials have properties that are often significantly different and considerably improved relative to those of their coarser-grained counterparts owing to both their small grain-size scale and the large percentage of their atoms in grain boundary environments. Since their properties can be engineered during the synthesis and processing steps, cluster-assembled materials appear to have significant potential for the introduction of a hierarchy of both structure and properties. Some of the recent research on nanophase materials related to properties and scale are reviewed and some of the possibilities for synthesizing hierarchical nanostructures via cluster assembly are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blander, M. and Katz, J. L., Geochim. Cosmochim. Acta 31, 1025 (1967).CrossRefGoogle Scholar
2. Blander, M. and Abdel-Gawad, M., Geochim. Cosmochim. Acta 33, 701 (1969).Google Scholar
3. Grossman, L., Geochim. Cosmochim. Acta 36, 597 (1972).CrossRefGoogle Scholar
4. Kear, B. H., Cross, L. E., Keem, J. E., Siegel, R. W., Spaepen, F., Taylor, K. C., Thomas, E. L., and Tu, K.-N., Research Opportunities for Materials with Ultrafine Microstructures (National Academy, Washington, DC, 1989), Vol. NMAB-454.Google Scholar
5. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., IIIGoddard, W. A., Kaldor, A., Louie, S. G., Moskovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F., and Wang, Y., J. Mater. Res. 4, 704 (1989).CrossRefGoogle Scholar
6. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, Hansen, N. et al., eds. (Risø National Laboratory, Roskilde, 1981) p. 15.Google Scholar
7. Birringer, R., Herr, U., and Gleiter, H., Suppl. Trans. Jpn. Inst. Met. 27, 43 (1986).Google Scholar
8. Siegel, R. W. and Hahn, H., in Current Trends in the Physics of Materials, Yussouff, M., ed. (World Scientific Publ. Co., Singapore, 1987) p. 403.Google Scholar
9. Hahn, H., Eastman, J. A., and Siegel, R. W., in Ceramic Transactions, Ceramic Powder Science, Vol.1, Part B, Messing, G. L. et al., eds. (American Ceramic Society, Westerville, 1988) p. 1115.Google Scholar
10. Siegel, R. W. and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 132, 3 (1989).CrossRefGoogle Scholar
11. Gleiter, H., Progress in Materials Science 33, 223 (1989).CrossRefGoogle Scholar
12. Siegel, R. W., in Materials Science and Technology, Vol.15, Cahn, R. W., ed.(VCH, Weinheim, 1991) p. 583.Google Scholar
13. Thomas, G. J., Siegel, R. W., and Eastman, J. A., Mater. Res. Soc. Symp. Proc. 153, 13 (1989).CrossRefGoogle Scholar
14. Siegel, R. W., Ann. Rev. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
15. Melendres, C. A., Narayanasamy, A., Maroni, V. A., and Siegel, R. W., J. Mater. Res. 4, 1246 (1989).CrossRefGoogle Scholar
16. Parker, J. C. and Siegel, R. W., J. Mater. Res. 5, 1246 (1990).CrossRefGoogle Scholar
17. Parker, J. C. and Siegel, R. W., Appl. Phys. Lett. 57, 943 (1990).CrossRefGoogle Scholar
18. Thomas, G. J., Siegel, R. W., and Eastman, J. A., Scripta Metall. et Mater. 24, 201 (1990).CrossRefGoogle Scholar
19. Siegel, R. W. and Thomas, G. J., Mater. Res. Soc. Symp. Proc. 209, 15 (1991).Google Scholar
20. Epperson, J. E., Siegel, R. W., White, J. W., Klippert, T. E., Narayanasamy, A., Eastman, J. A., and Trouw, F., Mater. Res. Soc. Symp. Proc. 132, 15 (1989).CrossRefGoogle Scholar
21. Jorra, E., Franz, H., Peisl, J., Wallner, G., Petry, W., Birringer, R., Gleiter, H., and Haubold, T., Phil. Mag. B 60, 159 (1989).CrossRefGoogle Scholar
22. Epperson, J. E., Siegel, R. W., White, J. W., Eastman, J. A., Liao, Y. X., and Narayanasamy, A., Mater. Res. Soc. Symp. Proc. 166, 87 (1990).CrossRefGoogle Scholar
23. Phillpot, S. R., Wolf, D., and Yip, S., MRS Bulletin XV(10), 38(1990).Google Scholar
24. Wolf, D. and Lutsko, J. F., Phys. Rev. Lett. 60, 1170 (1988).CrossRefGoogle Scholar
25. Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
26. Siegel, R. W., Ramasamy, S., Hahn, H., Li, Z., Lu, T., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
27. Eastman, J. A., Liao, Y. X., Narayanasamy, A., and Siegel, R. W., Mater. Res. Soc. Symp. Proc. 155, 255 (1989).CrossRefGoogle Scholar
28. Siegel, R. W., Mater. Res. Soc. Symp. Proc. 196, 59 (1990).CrossRefGoogle Scholar
29. Hort, E., Diploma Thesis, Universität des Saarlandes, Saarbrücken (1986).Google Scholar
30. Narayanasamy, A., Eastman, J. A., Siegel, R. W., unpublished results.Google Scholar
31. Averback, R. S., Hahn, H., Höfler, H. J., Logas, J. L., and Chen, T. C., Mater. Res. Soc. Symp. Proc. 153, 3 (1989).CrossRefGoogle Scholar
32. Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5, 609 (1990).CrossRefGoogle Scholar
33. Mayo, M. J., Siegel, R. W., Narayanasamy, A., and Nix, W. D., J. Mater. Res. 5, 1073 (1990).Google Scholar
34. Horváth, J., Birringer, R., and Gleiter, H., Solid State Commun. 62, 319 (1987).CrossRefGoogle Scholar
35. Horváth, J., Defect and Diffusion Forum 66–69, 207 (1989).Google Scholar
36. Hahn, H., Höfler, H., and Averback, R. S., Defect and Diffusion Forum 66–69, 549 (1989).Google Scholar
37. Schumacher, S., Birringer, R., Straub, R., and Gleiter, H., Acta Metall. 37, 2485 (1989).CrossRefGoogle Scholar
38. Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
39. Birringer, R. and Karch, J., Ceramics Intemational 16, 291 (1990).Google Scholar
40. Hahn, H., Logas, J., Höfler, H. J., Kurath, P., and Averback, R. S., Mater. Res. Soc. Symp. Proc. 196, 71 (1990).CrossRefGoogle Scholar
41. Mayo, M. J., Siegel, R. W., Liao, Y. X., and Nix, W. D., J. Mater. Res., in press (1992).Google Scholar
42. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).CrossRefGoogle Scholar
43. Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. et Mater. 24, 145 (1990).CrossRefGoogle Scholar
44. Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar