Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:40:45.206Z Has data issue: false hasContentIssue false

Closed-Cell Mesostructured Porous Silica Films Templated by PS-b-PEO Without Additional Microporosity

Published online by Cambridge University Press:  01 February 2011

Kui Yu
Affiliation:
Sandia National Laboratories, MS 1349, Albuquerque, NM
Bernd Smarsly
Affiliation:
Center for Micro-Engineered Materials, Univ of New Mexico, Albuquerque, NM 87131, U.S.A.
Jeffrey Brinker
Affiliation:
Sandia National Laboratories, MS 1349, Albuquerque, NM Center for Micro-Engineered Materials, Univ of New Mexico, Albuquerque, NM 87131, U.S.A.
Get access

Abstract

Mesostructured silica/diblock films with a 3D arrangement of spherical domains (bcc) were prepared through evaporation-induced self-assembly (EISA) using polystyrene-blockpoly( ethylene oxide) diblock copolymers as structure-directing agents and TEOS (Si(OCH2CH3)4) and/or MTES (Si(OCH2CH3)3CH3) as silica precursors. A detailed small angle x-ray scattering (SAXS) analysis of the calcined mesoporous films showed that, in contrast to recently reported studies, no additional microporosity due to the PEO was observed, indicating that the PEO block formed a layer at the interface between the PS domain and the silica matrix and thus contributed to the mesopore volume. These mesostructured porous silica films are believed to be the first in respect of isolated spheres with a 3D array distributed in a silica matrix without additional microporosity and with MTES as silica precursor. Such closed-cell mesostructured porous materials with high porosity and controllable hydrophobicity can be excellent candidates for low dielectric (K) insulator materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kresge, C., Leonowicz, M., Roth, W., Vartuli, C. and Beck, J., Nature 359, 710 (1992).Google Scholar
2. Huo, Q., Margolese, D. I., Clela, U., Feng, P. Gler, T. E., Sleger, P., Leon, R., Petroff, P. M., Schuth, F. and Stucky, G. D., Nature 368, 317 (1994).Google Scholar
3. Ozin, G. A., Chomski, E., Khushalani, D. and Maclachlan, M. J., Curr. Opin. Coll. Interface Sci. 3, 181 (1998).Google Scholar
4. Brinker, C. J., Lu, Y., Sellinger, A. and Fan, H., Adv. Mater. 11, 579 (1999).Google Scholar
5. Yu, K., Hurd, A. J., Eisenberg, A. and Brinker, C. J., Langmuir 17, 7961 (2001).Google Scholar
6. Yu, K., Brinker, C. J., Hurd, A. J. and Eisenberg, A., Polymer Preprints 42(1), 659 (2001).Google Scholar
7. Yu, K., Brinker, C. J., Hurd, A. J. and Eisenberg, A., Polymeric Materials: Science & Engineering Preprints 84, 796 (2001).Google Scholar
8. Yu, K., Drewien, C. A., Hurd, A. J., Brinker, C. J. and Eisenberg, A., Mat. Res. Soc. Symp. Proc. 672, O8.15 (2001).Google Scholar
9. Smarsly, B., Goltner, C., Antonietti, M., Ruland, W. and Hoinkis, E., J. Phys. Chem. B 105, 831, (2001).Google Scholar
10. Smarsly, B., Polarz, S. and Antonietti, M., J. Phys. Chem. B. 105, 10473 (2001).Google Scholar
11. Goltner, C. G., Smarsly, B., Berton, B., and Antonietti, M., Chem. Mater. 13, 1617 (2001).Google Scholar
12. Paul, S. M. D., Zwanziger, J. W., Ulrich, R., Wiesner, U. and Spiess, H. W., J. Am. Chem. Soc. 121, 5727 (1999).Google Scholar
13. Fyfe, C. A. and Aroca, P. P., J. Phys. Chem. B. 101, 9504 (1997).Google Scholar
14. Miller, R. D., Science 286, 421 (1999).Google Scholar
15. Smarsly, B., Antonietti, M. and Wolff, T., J. Chem. Phys. 116, 2618 (2002).Google Scholar
16. Xomeritakis, G., (private communication).Google Scholar