Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:41:03.050Z Has data issue: false hasContentIssue false

Cleavage Planes of Icosahedral Quasicrystals: A Molecular Dynamics Study

Published online by Cambridge University Press:  01 February 2011

Frohmut Rösch
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, 70550 Stuttgart, Germany
Christoph Rudhart
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, 70550 Stuttgart, Germany
Peter Gumbsch
Affiliation:
Universität Karlsruhe, Institut für Zuverlässigkeit von Bauteilen und Systemen, 76131 Karlsruhe, Germany Fraunhofer Institut für Werkstoffmechanik, 79194 Freiburg, Germany
Hans-Rainer Trebin
Affiliation:
Universität Stuttgart, Institut für Theoretische und Angewandte Physik, 70550 Stuttgart, Germany
Get access

Abstract

The propagation of mode I cracks in a three-dimensional icosahedral model quasicrystal has been studied by molecular dynamics techniques. In particular, the dependence on the plane structure and the influence of clusters have been investigated. Crack propagation was simulated in planes perpendicular to five-, two- and pseudo-twofold axes of the binary icosahedral model.

Brittle fracture without any crack tip plasticity is observed. The fracture surfaces turn out to be rough on the scale of the clusters. These are not strictly circumvented, but to some extent cut by the dynamic crack. However, compared to the flat seed cracks the clusters are intersected less frequently. Thus the roughness of the crack surfaces can be attributed to the clusters, whereas the constant average heights of the fracture surfaces reflect the plane structure of the quasicrystal. Furthermore a distinct anisotropy with respect to the in-plane propagation direction is found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ebert, Ph., Feuerbacher, M., Tamura, N., Wollgarten, M., and Urban, K., Phys. Rev. Lett. 77 (18), 3827 (1996).Google Scholar
2. Thomson, R., Hsieh, C., and Rana, V., J. Appl. Phys. 42 (8), 3154 (1971).Google Scholar
3. Gumbsch, P. and Cannon, R. M., Mater. Res. Bull. 25 (5), 15 (2000).Google Scholar
4. Henley, C. L. and Elser, V., Phil. Mag. B 53 (3), L59 (1986).Google Scholar
5. Gumbsch, P., Zhou, S. J., and Holian, B. L., Phys. Rev. B 55 (6), 3445 (1997).Google Scholar
6. Mikulla, R., Stadler, J., Krul, F., Trebin, H.-R., and Gumbsch, P., Phys. Rev. Lett. 81 (15), 3163 (1998).Google Scholar