No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
The research presented here aims to mimic the highly specialized local environment of the retina and to exploit the principles that govern its function, in order to construct functional optical interfaces that can be used as biotransducers. In the retina, a chromophore isomerizes and the protein to which it binds changes shape. In this proof-of-concept experiment we engineer an artificial surface to mimic the physiochemical environment of the retina and the key reaction of the visual cycle. We immobilized small peptides on silicon and assessed changes in their surface properties upon chromophore binding via AFM. Our observations suggest that when binding occurs it is accompanied by conformational changes of the surface-anchored peptide.