Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:19:03.306Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Copper Alloys

Published online by Cambridge University Press:  22 February 2011

Christopher J. Smart
Affiliation:
IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights, New York, 105982
Scott K. Reynolds
Affiliation:
IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights, New York, 105982
Carol L. Stanis
Affiliation:
IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights, New York, 105982
Arvind Patil
Affiliation:
IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights, New York, 105982
J. Thor Kirleis
Affiliation:
IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights, New York, 105982
Get access

Abstract

Chemical vapor deposition of metals is becoming a desirable alternative to physical deposition techniques (e.g. sputtering, evaporation) for applications in chip wiring. This is due to the possibility of achieving highly conformal coverage and low processing temperatures. Additionally, it is convenient to be able to enhance the physical properties (e.g. corrosion resistance, adhesion, electromigration resistance) of metal films used for chip interconnection by incorporation of an alloying agent. We have investigated the possibility of extending our current copper deposition process to allow for the deposition of copper alloys. By careful selection of the precursors and reactor conditions, simultaneous decomposition of the two compounds to give clean alloy films is effected. Using this co-deposition method, Cu-Co and Cu-Te alloy films were prepared. Precursor and reaction chemistry are discussed as well as some properties of the resulting films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) (a) Shin, H.K.; Chi, K.-M.; Hampden-Smith, M.J.; Kodas, T.T.; Farr, J.D.; Paffett, M. Chem. Mater., 4, 788, (1992).Google Scholar
(b) Norman, J.A.T.; Muratore, B.A.; Dyer, P.N.; Roberts, D.A.; Hochberg, A.K. J. Phys., 4, C2271, (1991).Google Scholar
(c) Baum, T.H.; Larson, C.E. Chem. Mater., 4, 365, (1992).Google Scholar
(d) Kumar, R.; Fronczek, F.R.; Maverick, A.W.; Lai, W.G.; Griffin, G.L. Chem. Mater., 4, 577, (1992).Google Scholar
(2) Reynolds, S.K.; Smart, C.J.; Baran, E.F,; Baum, T.H.; Larson, C.E.; Brock, P.J. Appl. Phys. Lett., 59, 2332, (1991).Google Scholar
(3) Hu, C.-K.; Small, M.B.; Kaufman, F.K.; Pearson, D.J. in Tungsten and Other Advanced Metals for VLSI/ULSI Applications V, edited by Wong, S.S. and Furukawa, S. (Mater. Res. Soc. Symp. Proc. VLSI V, Pittsburgh, PA, 1990), pp. 369373.Google Scholar
(4) Gross, M.E.; Donnelly, V.M. in Advanced Metallization for ULS1 Applications, edited by Rana, V.V.S., Joshi, R.V., and Ohdomari, I. (Mater. Res. Soc. Symp. Proc. ULSI VII, Pittsburgh, PA, 1992), pp. 355366.Google Scholar
(5) Doyle, G.; Eriksen, K.A.; Van Engen, D. Organometallics, 4, 830, (1985).Google Scholar
(6) McQueen, A.E.D.; Culshaw, P.N.; Walton, J.C.; Shenai-Khatkhate, D.V.; Cole-Hamilton, D.J.; J. Cryst. Growth, 107, 325, (1991).Google Scholar
(7) Higa, K.T.; Harris, D.C. Organometallics, 8, 1674, (1989).Google Scholar
(8) Ross, P.J. Taguchi Techniques for Quality Engineering, (McGraw-Hill, New york, 1988), p. 23.Google Scholar
(9) Wagner, F. (private communication).Google Scholar
(10) Hieber, W. Adv. Organomet. Chem., 8, 1, (1970).Google Scholar
(11) Butts, A. Copper: the Metal, Its Alloys and Compounds (Rheinhold Publishing Corp., New York, 1954), p. 484.Google Scholar