Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T01:57:10.539Z Has data issue: false hasContentIssue false

Chemical Vapor Deposited β-SiC for Optics Applications

Published online by Cambridge University Press:  15 February 2011

Jitendra S. Goela
Affiliation:
Morton Advanced Materials, 185 New Boston Street, Woburn, MA 01801
Michael A. Pickering
Affiliation:
Morton Advanced Materials, 185 New Boston Street, Woburn, MA 01801
Raymond L. Taylor
Affiliation:
Morton Advanced Materials, 185 New Boston Street, Woburn, MA 01801
Get access

Abstract

The fabrication, properties and optics applications of transparent and opaque Chemical Vapor Deposited (CVD) β-SiC are reviewed. CVD-SiC is fabricated by the pyrolysis of methyltrichlorosilane, in excess H2, in a low-pressure CVD reactor. The CVD process has been successfully scaled to produce monolithic SiC parts of diameter up to 1.5 m and thickness 2.5 cm. The characterization of CVD-SiC for important physical, optical, mechanical and thermal properties indicate that it is a superior material for optics applications. CVD-SiC properties are compared with those of the other candidate mirror and window materials. SiC process/property relationships are discussed, emphasizing the differences in process conditions, microstructure, and properties between transparent and opaque CVD-SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Block, J. R. and Drake, R. J., Laser Foc. World 25(8), 97 (1989).Google Scholar
2. Choyke, W. J., Farich, R. F. and Hoffman, R. A., Appl. Opt. 15, 2006 (1976).Google Scholar
3. Rehn, V., Stanford, J. L., Baer, A. D., Jones, V. O. and Choyke, W. J., Appl. Opt. 16, 1111 (1977).10.1364/AO.16.001111Google Scholar
4. Rehn, V. and Choyke, W. J., Nucl. Instrum. Methods 117, 173 (1980).Google Scholar
5. Kelly, M. M. and West, J. B., SPIE Proc. 315, 135 (1981).10.1117/12.933000Google Scholar
6. Gentilman, R. L. and Maguire, E. A., SPIE Proc. 315, 131 (1981).Google Scholar
7. Engdahl, R., SPIE Proc. 315, 123 (1981).10.1117/12.932998Google Scholar
8. Goela, J. S. and Taylor, R. L., Appl. Phys. Lett. 54, 2512 (1989); SPIE Proc. 1062, 37 (1989); 1118, 14 (1989); 1047, 198 (1989); Am. Ceram. Soc. 72, 1747 (1989).10.1063/1.101078Google Scholar
9. Maguire, E. A., Dionesotes, N. T. and Gentilman, R. L., U. S. Air Force Tech. Rep. AFWAL-TR-86-4128 (Wright Patterson Air Force Base, Ohio, December 1986).Google Scholar
10. Pickering, M. A., Taylor, R. L., Keeley, J. T. and Graves, G. A., Nucl. Instrum. Methods A 291, 95 (1990).Google Scholar
11. Goela, J. S., Pickering, M. A., Taylor, R. L., Murray, B. W. and Lompado, A., Appl. Opt. 30, 3166 (1991).Google Scholar
12. Pickering, M. A. and Taylor, R. L., U. S. Air Force Tech. Rept. No. AFWAL-TR-87-4016 (Wright Patterson Air Force Base, Ohio, April 1987).Google Scholar
13. Cooke, F., Fantone, S., and Fuchs, B., Appl. Opt. 26, 2050 (1987).Google Scholar
14. Goela, J. S., Burns, L. E., and Taylor, R. L., Appl. Phys. Lett. 64, 131 (1994).Google Scholar
15. Goela, J. S. and Taylor, R. L., J. Am. Ceram. Soc. 75, 2134 (1992).Google Scholar
16. Goela, J. S., Pickering, M. A. and Taylor, R. L., SPIE Proc. 1753, 77 (1992).10.1117/12.140693Google Scholar
17. Goela, J. S., Pickering, M. A., Taylor, R. L., Murray, B. W. and Lompado, A., SPIE Proc. 1330, 25 (1990).10.1117/12.47515Google Scholar
18. Goela, J. S. and Taylor, R. L.; Air Force Rept. No. AFWAL-TR-86-4131; CVD, Inc. Rept. No. TR-031 (March 1987).Google Scholar
19. Collins, A., Keeley, J., Pickering, M. A. and Taylor, R. L., Mat. Res. Soc. Symp. Proc. 168, 193 (1990).Google Scholar
20. Pickering, M. A., Taylor, R. L., Goela, J. S. and Desai, H., Mat. Res. Soc. Symp. Proc. 250, 145 (1992).10.1557/PROC-250-145Google Scholar
21. Kim, Y., Zanquil, A., Goela, J. S. and Taylor, R. L., in Inst. Phys. Conf. Ser. No. 137, Chapter 6, IOP Publishing Ltd., 569 (1994).Google Scholar
22. Goela, J. S. and Taylor, R. L., SPIE Proc. 2286 (1994).Google Scholar
23. Chu, C. H. and Hon, M. H., J. Ceram. Soc. Japan 101(1), 95 (1993).Google Scholar
24. Geril, N., Grigley, L., Wilson, S. and Goela, J. S., to be presented at the SPIE Space Telescopes and Instrumentation Ill-Conference, Orlando, FL (April 1995).Google Scholar
25. Pickering, M. A. and Goela, J. S., Rome Laboratory Technical Report No. RL-TR-94-155 (Sept. 1994).Google Scholar
26. Graves, G. A. and Iden, D., Rome Laboratory Technical Report No. RL-TR-94-122 (Aug. 1994).Google Scholar
27. Davis, R. F., Mat. Res. Svc. Symp. Proc. 168, 145 (1990).Google Scholar
28. Schlichting, J., Powder Metall. Int. 12, 14 (1980).Google Scholar
29. Nihara, K., Ceram. Bull. 63, 1160 (1984).Google Scholar
30. Weiss, J. R. and Diefendorf, R. J., in Silicon Carbide - 1973, ed. Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E. 80 (1973).Google Scholar
31. Kuo, D. H., Cheng, D. J. and Shyy, W. J., J. Electro Chem. Soc. 137 3688 (1090).10.1149/1.2086288Google Scholar
32. Allendorf, M. D., Melius, C. F. and Osterheld, T. H., Sandia National Lab. Rept. No. SAND93-8464.UC-401 (February 1993).Google Scholar
33. Chin, J., Gantzel, P. K. and Hudson, R. G., Thin Solid Films 40, 57 (1977).Google Scholar
34. So, M. G. and Chun, J. S., J. Vac. Sci. Techncl. A6, 5 (1988).10.1116/1.574969Google Scholar
35. Keeley, J., Goela, J. S., Pickering, M. and Taylor, R. L., U.S. Patent No. 4,990,374 (February 5, 1991).Google Scholar
36. Goela, J. S., Jaworski, R. D. and Taylor, R. L., U.S. Patent No. 4,963,393 (Oct. 16, 1990).Google Scholar
37. Goela, J. S. and Taylor, R. L., U.S. Patent No. 5,071,596 (December 10, 1991).Google Scholar
38. Goela, J. S., Pickering, M. and Taylor, R. L., U.S. Patent No. 5,150,507 (September 29, 1992).Google Scholar
39. Collins, A., Keeley, J., Pickering, M. A. and Taylor, R. L., Mat. Res. Soc. Symp. Proc. 168, 193 (1990).10.1557/PROC-168-193Google Scholar
40. Shields, V. B., Fekade, K. and Spencer, M. G., Appl. Phys. Lett. 62, 1919 (1993).Google Scholar
41. Kong, H. S., Glass, J. J. and Davis, R. F., Appl. Phys. Lett. 49, 1074 (1986).10.1063/1.97479Google Scholar
42. Shigeta, M., Fujii, Y., Furukawa, K., Suzuki, A. and Nakajima, S., Appl. Phys. Lett., 55 1522 (1989).10.1063/1.102252Google Scholar
43. Steckl, A. and Li, J. P., IEEE Trans. Electr. Rev. 39, 64 (1992).Google Scholar
44. Gentilman, R. L., SPIE Proc. 683, 2 (1986).Google Scholar
45. Khattak, C. P. and Schmid, F., SPIE Proc. 1760, 41 (1992).10.1117/12.130784Google Scholar
46. Kim, Y., Zangvil, A., Goela, J. S. and Taylor, R. L., J. Am. Ceram. Soc. (to be published).Google Scholar