Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:42:13.295Z Has data issue: false hasContentIssue false

Chemical Profiling and Structural Studies of Ionbeam-Mixed Aluminum on Silicon

Published online by Cambridge University Press:  15 February 2011

F. Namavar
Affiliation:
Department of Phk'sics, UniversitY of Connecticut, U–46, Storrs, CT06268, (U.S.A.)
J. I. Budnick
Affiliation:
Department of Phk'sics, UniversitY of Connecticut, U–46, Storrs, CT06268, (U.S.A.)
F. A. Otter
Affiliation:
United Technologies Research Center, East Hartford, CT 06108, (U.S.A.)
Get access

Abstract

The ion beam mixing technique has been applied to the production of Al–Si thin alloy layers as an alternative method to thermal annealing. Both unimplanted deposited aluminum thin films on silicon substrates and films implanted with energetic xenon ions were studied by Rutherford backscattering, channeling, secondary ion mass spectroscopy, nuclear resonance profiling and scanning electron microscopy techniques. The results of these experiments indicate that (i) intermixing between aluminum and silicon became observable when the implantation dose of energetic xenon through the interface surpassed 2 × 1016 ions cm−2; (ii) intermixing is dependent on the dose but not on the dose rate of implantation; (iii) damage to the silicon substrate extended only to the region penetrated by implanted ions; (iv) the Al-Si alloy layer region is uniform in texture and no segregation can be observed. Moreover, the integrity of the alloy layer is retained for a long period of room temperature annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Totta, P.A. and Sopher, R. P., IBM J. Res. Dev., 13 (1967) 226.CrossRefGoogle Scholar
2 Lane, C. H., Metall. Trans., 1 (1970) 713.CrossRefGoogle Scholar
3 McCaldin, J. O. and Sankur, H., Appl. Phys. Lett., 19 (1971) 524.Google Scholar
4 Price, T. E. and Berthoad, L. S., Solid–State Electron., 16 (1973) 1303.Google Scholar
5 Chino, K., Solid–State Electron., 16 (1973) 119.Google Scholar
6 Van Curp, G. J., J. Appl. Phys., 44 (1973) 2040.Google Scholar
7 McCaldin, J. O. and Sankur, H., Appl. Phys. Lett., 20 (1972) 171.Google Scholar
8 Sankur, H., McCaldin, J. O. and DeVaney, J., Appl. Phys. Lett., 22 (1973) 64.Google Scholar
9 Reith, T. M. and Shick, J. D., Appl. Phys. Left., 25 (1974) 524.CrossRefGoogle Scholar
10 Boatright, R. L. and McCaldin, J. O., J. Appl. Phys., 47 (1976) 2260.Google Scholar
11 Tsaur, B. Y., Liau, Z. L. and Mayer, J. W., Appl. Phys. Lett., 34 (1979) 168.Google Scholar
12 Kanayama, T., Tanoue, H. and Tsurushima, T., Appl. Phys. Lett., 35 (1979) 222.Google Scholar
13 Tsaur, B. Y., Mayer, J. W., Nicolet, M.-A and Tu, K. N., in Hirvonen, J. K. and Preece, C. M. (eds.), Surface Modification of Materials by Ion Implantation, Materials Research Society, University Park, PA, 1979.Google Scholar
14 Namavar, F., Doctoral Thesis, University of Leuven, Leuven, 1978.Google Scholar
14a Namavar, F., Rots, M., Claes, J. and Coussement, R., Hyperfine Interact., 12 (1982) 233.Google Scholar
15 Reintsema, S. R., Verbrest, E., Odeurs, J. and Pattyn, H., J. Phys. F, 9 (1979) 1511.Google Scholar
16 Chu, W.-K., Mayer, J. W. and Nicolet, M.-A., Backscattering Spectroscopy, Academic Press, New York, 1978.Google Scholar
17 Phillips, W. R. and Read, F. H., Proc. Phys. Soc. London, 81 (1963) 1.CrossRefGoogle Scholar
18 Bondelid, R. O. and Kennedy, C. A., Phys. Rev., 115 (1959) 1601. Skorka, S. J. and Retz–Schmidt, T. W., Nucl. Phys., 46 (1963) 225.Google Scholar
19 Yeng, E. T., Masters, B. J. and Kastl, R., in Namba, S. (ed.), Ion Implantation in Semiconductors, Plenum, New York, 1975.Google Scholar