Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T01:47:49.123Z Has data issue: false hasContentIssue false

Chemical Nano-tomography of Self-assembled Ge-Si:Si(001) Islands from Quantitative High Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2011

Luciano Andrey Montoro
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Av. Giuseppe Maximo Scolfaro, 10000, Campinas, 13083970, Brazil
Marina Leite
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Campinas, Brazil
Daniel Biggemann
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Campinas, Brazil
Fellipe Grillo Peternella
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Campinas, Brazil
Kees Joost Batenburg
Affiliation:
[email protected], University of Antwerp, Vision Lab, Wilrijk, Belgium
Gilberto Medeiros-Ribeiro
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Campinas, Brazil
Antonio J. Ramirez
Affiliation:
[email protected], Brazilian Synchrotron Light Laboratory, Campinas, Brazil
Get access

Abstract

The knowledge of composition and strain with high spatial resolution is highly important for the understanding of the chemical and electronic properties of alloyed nanostructures. Several applications require a precise knowledge of both composition and strain, which can only be extracted by self-consistent methodologies. Here, we demonstrate the use of a quantitative high resolution transmission electron microscopy (QHRTEM) technique to obtain two-dimensional (2D) projected chemical maps of epitaxially grown Ge-Si:Si(001) islands, with high spatial resolution, at different crystallographic orientations. By a combination of these data with an iterative simulation, it was possible infer the three-dimensional (3D) chemical arrangement on the strained Ge-Si:Si(001) islands, showing a four-fold chemical distribution which follows the nanocrystal shape/symmetry. This methodology can be applied for a large variety of strained crystalline systems, such as nanowires, epitaxial islands, quantum dots and wells, and partially relaxed heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bimberg, D., et.al, Quantum Dot Heterostructures (John Wiley & Sons: Chichester, 1999).Google Scholar
2. Rastelli, A., Stoffel, M., Malachias, A., Merdzhanova, T., Katsaros, G., Kern, K., Metzger, T. H., Schmidt, O. G., Nano Lett. 8, 1404 (2008).Google Scholar
3. Boscherini, F., Capellini, G., Gaspare, L. Di, Rosei, F., et.al, Appl. Phys. Lett. 76, 682 (2000).Google Scholar
4. McDaniel, E. P., Crozier, P. A., Drucker, J., Smith, D. J., Appl. Phys. Lett. 87, 223101 (2005).Google Scholar
5. Chaparro, S. A., Drucker, J., Zhang, Y., Chandrasekhar, D., McCartney, M. R., Smith, D. J., Phys. Rev. Lett. 83, 1199 (1999).Google Scholar
6. Malachias, A., Kycia, S., Medeiros-Ribeiro, G., MagalhÁes-Paniago, R., Kamins, T. I., Williams, R. S., Phys. Rev. Lett. 91, 176101 (2003).Google Scholar
7. Schülli, T. U., Stangl, J., Zhong, Z., Lechner, R. T., Sztucki, M., Metzger, T. H., Bauer, G., Phys. Rev. Lett. 90, 066105 (2003).Google Scholar
8. Schade, M., Heyroth, F., Syrowatka, F., Leipner, H. S., Boeck, T., Hanke, M., Appl. Phys. Lett. 90, 263101 (2007).Google Scholar
9. Kret, S., Ruterana, P., Rosenauer, A., Gerthsen, D., Phys. Stat. Sol. B 227, 247 (2001).Google Scholar
10. Rosenauer, A., Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State (Springer-Verlag: Berlin, 2003).Google Scholar
11. Hÿtch, M. J., Snoeck, E., Kilaas, R., Ultramicroscopy 74, 131 (1998).Google Scholar
12. Hÿtch, M. J., Putaux, J.-M., Penisson, J.-M., Nature 423, 270 (2003).Google Scholar
13. Johnson, C. L., Snoeck, E., Ezcurdia, M., Rodríguez-González, B., Pastoriza-Santos, I., Liz-Marzán, L. M., Hÿtch, M. J., Nature Materials 7, 120 (2008).Google Scholar
14. Meyer, R. R., Kirkland, A. I., Saxton, W. O., Ultramicroscopy 92, 89 (2002).Google Scholar
15. Chung, J., Rabenberg, L., Ultramicroscopy 108, 1595 (2008).Google Scholar
16. Hÿtch, M. J., Plamann, T., Ultramicroscopy 87, 199 (2001).Google Scholar
17. Hüe, F., Johnson, C. L., Lartigue-Korinek, S., Wang, G., Buseck, P. R., Hÿtch, M. J., J. Electron Microscopy 54, 181 (2005).Google Scholar
18. Tsao, J. Y., Materials Fundamentals of Molecular Beam Epitaxy (Academic Press, 1993)Google Scholar
19. Wortman, J. J., Evans, R. A., J. Appl. Phys. 36, 153 (1965).Google Scholar
20. Kamins, T. I., Carr, E. C., Williams, R. S., Rosner, S. J., J. Appl. Phys. 81, 211 (1997).Google Scholar
21. Ross, F. M., Tromp, R. M., Reuter, M. C., Science 286, 1931 (1999)Google Scholar
22. Denker, U., Stoffel, M., Schmidt, O.G., Phys. Rev. Lett. 90, 196102 (2003).Google Scholar