Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:42:11.508Z Has data issue: false hasContentIssue false

Chemical Etching of AlN and InAlN in KOH Solutions

Published online by Cambridge University Press:  10 February 2011

C. B. Vartuli
Affiliation:
University of Florida, Gainesville FL 32611,
J. W. Lee
Affiliation:
University of Florida, Gainesville FL 32611,
J. D. MacKenzie
Affiliation:
University of Florida, Gainesville FL 32611,
S. J. Pearton
Affiliation:
University of Florida, Gainesville FL 32611,
C. R. Abernathy
Affiliation:
University of Florida, Gainesville FL 32611,
J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185,
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185,
F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill NJ 07974
Get access

Abstract

Wet chemical etching of A1N and InxAl1-xN was investigated in KOH-based solutions as a function of etch temperature, and material quality. The etch rates for both materials increased with increasing etch temperatures, which was varied from 20 °C to 80 °C. The crystal quality of A1N prepared by reactive sputtering was improved by rapid thermal annealing at temperatures to 1100 °C with a decreased wet etch rate of the material measured with increasing anneal temperature. The etch rate decreased approximately an order of magnitude at 80 °C etch temperature after a 1100 °C anneal. The etch rate for In0.19Al0.81N grown by Metal Organic Molecular Beam Epitaxy was approximately three times higher for material on Si than on GaAs. This corresponds to the superior crystalline quality of the material grown on GaAs. Etching of InxAl1-xN was also examined as a function of In composition. The etch rate initially increased as the In composition changed from 0 to 36%, and then decreased to 0 Å/min for InN. The activation energy for these etches is very low, 2.0 ± 0.5 kcal•mol-1 for the sputtered A1N. The activation energies for InAIN were dependent on In composition and were in the range 2–6 kcal mol-1. GaN and InN layers did not show any etching in KOH at temperatures up to 80 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., and Mukai, T., Jpn. J. Appl. Phys. 30, L1708 (1991).Google Scholar
2. Binari, S.C., Rowland, L.B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D.K., Electron. Lett. 30, 1248 (1994).Google Scholar
3. Khan, M.A., Shur, M.S., and Chen, Q., Electron. Lett. 31, 2130 (1995).Google Scholar
4. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., and Olson, D.T., Appl. Phys. Lett. 62, 1248 (1993).Google Scholar
5. Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62 2390 (1993).Google Scholar
6. Akasaki, I., Amano, H., Kito, M., and Kiramatsu, K., J. Lumin. 48/49, 666 (1991).Google Scholar
7. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67, 1868 (1995).Google Scholar
8. Zolper, J.C., Baca, A.G., Shul, R.J., Wilson, R.G., Pearton, S.J. and Stall, R.A., Appl. Phys. Lett. 68, 166 (1996).Google Scholar
9. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H. and Sugimoto, Y., Jap. J. Appl. Phys. 35 L74 (1996).Google Scholar
10. Taylor, K.M. and Lenie, C., J. Electrochem. Soc. 107 308 (1960).Google Scholar
11. Long, G. and Foster, L.M., J. Am. Ceram. Soc. 42 53 (1959).Google Scholar
12. Barrett, N.J., Grange, J.D., Sealy, B.J. and Stephens, K.G., J. Appl. Phys. 57 5470 (1985).Google Scholar
13. Aita, C.R. and Gawlak, C.J., J. Vac. Sci. Technol. A 1 403 (1983).Google Scholar
14. Kline, G.R. and Lakin, K.M., Appl. Phys. Lett. 43 750 (1983).Google Scholar
15. Pauleau, T., J. Electrochem. Soc. 129 1045 (1982).Google Scholar
16. Sheng, T.Y., Yu, Z.Q. and Collins, G.J., Appl. Phys. Lett. 52 576 (1988).Google Scholar
17. Mileham, R.J., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J. and Kilkoyne, S.P., Appl. Phys. Lett. 67, 1119 (1995).Google Scholar
18. Guo, Q.X., Kato, O. and Yoshida, Y., J. Electrochem. Soc. 139 2008 (1992).Google Scholar
19. Zolper, J.C., Hagerott-Crawford, M., Howard, A.J., Rainer, J. and Hersee, S.D., Appl. Phys. Lett. 68, 200 (1996).Google Scholar
20. Lin, M.E., Sverdlov, B.N. and Morkoc, H., Appl. Phys. Lett. 63, 3625 (1993).Google Scholar
21. Zolper, J.C., Reiger, D.J., Baca, A.G., Pearton, S.J., Lee, J.W., Stall, R.A., Appl. Phys. Lett, (in press).Google Scholar
22. Abernathy, C.R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
23. Abernathy, C.R., Mat. Sci. Eng. Rep. 14, 203 (1995).Google Scholar