Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T06:56:38.664Z Has data issue: false hasContentIssue false

Chemical Corrosion of Cogema Glass R7T7 in High Saline Brines

Published online by Cambridge University Press:  28 February 2011

Werner Lutze
Affiliation:
Hahn-Meitner-Institut Berlin GmbH., Glienicker Strasse 100, D-1000 Berlin 39, Federal Republic of Germany;
R. Müller
Affiliation:
Hahn-Meitner-Institut Berlin GmbH., Glienicker Strasse 100, D-1000 Berlin 39, Federal Republic of Germany;
W. Montserrat
Affiliation:
Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH (DWK), Hannover, Hamburger Allee 4, Federal Republic of Germany.
Get access

Abstract

In the Federal Republic of Germany, the salt dome formation at Gorleben has been selected as a possible site for final disposal of HLW. The waste form will be borosilicate glass, e. g. the French Cogema glass R7T7. The corrosion of this glass has been investigated in three reference salt brines (brine 1: high Mg, brine 2: Ca and Mg, and brine 3: high Na) at three different temperatures, 110°, 150°, and 190°C and three S/V ratios, 10, 100, and 1000m−1. Results are presented for brine 1 and are compared qualitatively with those obtained for the other brines. As in deionized water and pure NaCl, the corrosion rate decreases when silica saturation is approached, but the reaction does not cease. The data after silica saturation were used to calculate upper limiting, i. e. time-independent corrosion rates. The long-term data indicate that a transport process through the growing surface layer may become rate controlling, and that the rate may further decrease after silica saturation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[ 1] Nogues, J. L., Vernaz, E. Y. and Jacquet-Francillon, N., 1985, Scientific Basis for Nuclear Waste Management, Mat. Res. Soc., Vol. 44, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., p. 89Google Scholar
[ 2] Nuclear Waste Materials Handbook, Test Methods, 1982, DOE/TIC-11400Google Scholar
[ 3] D'Ans, J., 1933, Die Lösungsgleichgewichte der Systeme der Salze ozeanischer Salzablagerungen, Verlagsgesellschaft für Ackerbau, Berlin Google Scholar
[ 4] Conradt, R., Engelke, H. and Kaiser, A., 1982, Scientific Basis for Nuclear Waste Management, North-Holland, Vol.11, Lutze, W., ed., p. 487 Google Scholar
[ 5] D'Ans-Lax, , 1949, Taichenbuch für Chemiker und Physiker, Springer Verlag Google Scholar
[ 6] Gmelins Handbuch der anorganischen Chemie. 8. Auflage, 1928, Verlag Chemie, Weinheim/Berlin, Syst. Nr. 21, S.331Google Scholar
[ 7] Pederson, L. R., Buckwalter, Ch. Q., McVay, G. L. and Riddle, G. L., 1983, Scientific Basis for Nuclear Waste Management, Vol.15, North-Holland, Brookins, D. G., ed., p. 47 Google Scholar
[ 8] Freude, E., Grambow, B., Lutze, W., Rabe, H. and Ewing, R. C., 1985, Scientific Basis for Nuclear Waste Management, Mat. Res. Soc., Vol.44, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., p.99Google Scholar
[ 9] Haaker, R., Malow, G. and Offermann, P., 1985, Scientific Basis for Nuclear Waste Management, Mat. Res. Soc., Vol.44, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., p. 121Google Scholar
[ 10] Van Iseghem, P., and Grambow, B., this symposiumGoogle Scholar
[ 11] Grambow, B., 1985, Scientific Basis for Nuclear Waste Management, Mat. Res. Soc., Vol. 44, Jantzen, C. M., Stone, J. A., Ewing, R. C., eds., p.15Google Scholar
[ 12] Haaker, R., 1985, Report HMI-B 424Google Scholar
[ 13] JSS-Project Phase IV Final Report, 87–01 (SKB Stockholm) in pressGoogle Scholar
[ 14] JSS-Project Phase V Final Report, to be published in 1988 Google Scholar
[ 15] Grambow, B. et al. this symposium (see Fig.1)Google Scholar