Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:27:27.513Z Has data issue: false hasContentIssue false

Chemical Beam Epitaxy of GaP Using Triethylgallium and Tertiarybutylphosphine

Published online by Cambridge University Press:  22 February 2011

James T. Kelliher
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695–7919.
Klaus J. Bachmann
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7919, Raleigh, NC 27695–7919.
Get access

Abstract

In this paper we report the growth of GaP/Si heterostructures by metalorganic chemical beam epitaxy (MOCBE), including information on a MOCBE system custom built for this work. The gallium source was triethylgallium and the phosphorus source was tertiarybutylphosphine. The range for GaP epitaxy is 260 <T< 375°C. Methods of characterization included scanning electron microscopy (SEM), Auger electron (AES), X-ray photoelectron (XPS) and Rutherford backscattering (RBS) spectroscopies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yoshida, M. and Watanabe, H., Journal of the Electrochemical Society 132(3), 677 (1985).Google Scholar
2 Lin, R., Gow, T.R., Backman, A.L., Cadwell, L.A., Lee, F., Masel, R.I., Journal of Vacuum Science and Technology B 7(4), 725 (1989).Google Scholar
3 Chen, C.H., Larsen, C.A. and Stringfellow, G.B., Brown, D.W., Robertson, A.J., Journal of Crystal Growth 77, 11 (1986).Google Scholar
4 deLyon, T.J., Woodall, J.M., Kirchner, P.D., Mclnturff, D.T., Scilla, G.J., Cardone, F., Journal of Vacuum Science and Technology B 9(1), 136 (1991).Google Scholar
5 Tokumitsu, E., Kudou, Y., Konagai, M., Takahashi, K., Japanese Journal of Applied Physics 24, 1189(1985).Google Scholar
6 Balk, P., Heinecke, H., Pütz, N., Plass, C., Lüth, H., Journal of Vacuum Science and Technology A 4(3), 711 (1986).Google Scholar
7 BIakeslee, A.E., Al-Jassim, M.M., Asher, S.E., Material Research Society Symposia Proceeding 91, 105 (1987).Google Scholar
8 Yoshimoto, M., Ozasa, K., Matsunami, H., Journal of Applied Physics 70(10), 5708 (1991).Google Scholar
9 Pütz, N., Heinecke, H., Heyen, M., Balk, P., Weyers, M., Luth, H., Journal of Crystal Growth 74, 292 (1986).Google Scholar
10 Stringfellow, G. B., Journal of Electronic Materials 17(4), 327 (1988).Google Scholar
11 Chin, A., Martin, P., Das, U., Mazurowski, J., and Ballingall, J., Applied Physics Letters 61(17), 2099 (1992).Google Scholar
12 Takeda, Y., Araki, S., Takemi, M., Noda, S., Sasaki, A., Journal of Crystal Growth 107, 351 (1991).Google Scholar
13 Li, S.H., Larsen, C.A., Buchan, N.I., Stringfellow, G.B., Kosar, W.P., Brown, D.W., Journal of Applied Physics 65(12), 5161 (1989).Google Scholar
14 Solanki, R., Sudarsan, U. and Johnson, J.C., Applied Physics Letters 52(11), 919 (1988).Google Scholar
15 Tsang, W. T., Applied Physics Letters 45(11), 1234 (1984).Google Scholar