Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:56:56.916Z Has data issue: false hasContentIssue false

Chemical Beam Epitaxy Of Ganxpi- Using A N Radical Beam Source

Published online by Cambridge University Press:  15 February 2011

N. Y. Li
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093, [email protected]
D. H. Tomich
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093, [email protected]
W. S. Wong
Affiliation:
MSME Department, University of California, Berkeley, CA 94720
J. S. Solomon
Affiliation:
Research Institute, University of Dayton, Dayton, OH 45469
C. W. Tu
Affiliation:
ECE Department, University of California, San Diego, La Jolla, CA 92093, [email protected]
Get access

Abstract

In this study we report the growth behavior of GaNxP1−x by chemical beam epitaxy using triethylgallium, tertiarybutylphosphine, and a RF-plasma N radical beam source. We demonstrate that the N radical beam source is an effective N source for the growth of GaNxP1−x, compared to ammonia (NH3) with co-injection of phosphine (PH3) or tertiarybutylphosphine (TBP). At a growth temperature of 640°C, the N composition increases slowly from 2.5 to 2.8% even though the N2 flow rate is doubled. When the N2 flow rate is increased further, the reflection high-energy electron diffraction pattern (RHEED) becomes spotty. The N composition, however, shows a strong dependence on the growth temperature. For a fixed N plasma radical beam flux, the lower the substrate temperature is, the higher the N incorporation. The N composition can be adjusted from 0.7 to 10.2% by lowering the growth temperature from 690 to 400°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fang, S. F., Adomi, K., Iyer, S., Morkoc, H., Zabl, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, p. R31 (1990).Google Scholar
2. Tachikawa, M., Yamada, T., and Sasaki, T., Jpn. J. Appl. Phys. 34, p. L657, (1995).Google Scholar
3. Kondow, M., Uomi, K., Hosomi, K., and Mozume, T., Jpn. J. Appl. Phys. 33, p. L1056 (1994).Google Scholar
4. Bi, W. G., and Tu, C. W., unpublished.Google Scholar
5. Baillargeon, J. N., Cheng, K. Y., Hofler, G. E., Pearah, P. J., and Hsieh, K. C., Appl. Phys. Lett. 60, p. 2540 (1992).Google Scholar
6. Li, N. Y., Wong, W. S., Tomich, D. H., Dong, H. K., Solomon, J. S., Grant, J. T., and Tu, C. W., to be published in J. Crystal Growth (1996).Google Scholar
7. Foxon, C. T., Cheng, T. S., Novikov, S. V., Lacklison, D. E., Jenkins, L. C., Johnston, D., Orton, J. W., Hooper, S. E., Baba-Ali, N., Tansley, T. L., and Tret'yakov, V. V., J. Crystal Growth 150, p. 892 (1995).Google Scholar
8. Ohkawa, K., Ueno, A., and Mitsuya, T., J. Crystal Growth 117, p. 375 (1992).Google Scholar
9. Chin, T. P., Liang, B. W., Hou, H. Q., Ho, M. C., Chang, C. E., and Tu, C. W., Appl. Phys. Lett. 58, p. 254 (1993).Google Scholar
10. Macrander, A. T., Schwartz, G. P., and Gualtieri, G. T., J. Appl. Phys. 64, p. 6736 (1988).Google Scholar
11. Hornstra, J., and Bartels, W. J., J. Crystal Growth 44, p. 513 (1978).Google Scholar
12. Sherwin, M. E., and Drummond, T. J., J. Appl. Phys. 69, p. 8423 (1991).Google Scholar
13. Li, N. Y., Wong, W. S., Tomich, D. H., Kavanagh, K. L., and Tu, C. W., to be published in J. Vac. Sci. Technol. (1996).Google Scholar
14. Bi, W. G., and Tu, C. W., unpublished.Google Scholar
15. Kubaschewski, O., Alcock, C. B., and Spencer, P. J., Materials Thermochemistry, Pergamon Press, New York, 1993, p. 279.Google Scholar