Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T10:29:21.470Z Has data issue: false hasContentIssue false

Chemical and Electrochemical Heteroepitaxial Growth of Chalcogenide Semiconductors from Solutions

Published online by Cambridge University Press:  10 February 2011

D. Lincot
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (U.A. 216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris, France, [email protected]
M. J. Furlong
Affiliation:
Laboratoire d'Electrochimie et de Chimie Analytique (U.A. 216 du CNRS), Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris, France, [email protected]
M. Froment
Affiliation:
Physique des Liquides et Electrochimie (UPR15 du CNRS), Université Pierre et Marie Curie, 4 place Jussieu, 75232 Paris, France.
R. Cortes
Affiliation:
Physique des Liquides et Electrochimie (UPR15 du CNRS), Université Pierre et Marie Curie, 4 place Jussieu, 75232 Paris, France.
M. C. Bernard
Affiliation:
Physique des Liquides et Electrochimie (UPR15 du CNRS), Université Pierre et Marie Curie, 4 place Jussieu, 75232 Paris, France.
Get access

Abstract

Chalcogenide semiconductors have been deposited epitaxially from aqueous solutions either chemically or electrochemically at growth rates of up to 0.7 μmhr−1. After recalling the basic principles of these deposition processes, results are presented concerning chemically deposited CdS on InP, GaP and CuInSe2 substrates, electrodeposited CdTe on InP, and CdSAnP heterostructures. Characterisation of these structures by RHEED, TEM, HRTEM, and glazing angle X ray diffraction allows to analyse the effects of substrate orientation, polarity, lattice match plus the influence of temperature on epitaxial growth. These results are discussed in terms of self organisation and a site selective growth mechanisms due to the free enegy of formation of each compound.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chopra, K. L., Kainthla, R.C., Pandya, D. K. and Thakoor, A. P., Phys. Thin Films 12, 167 (1982) and references therein.Google Scholar
2. Bloem, J., Appl. Sci. Res. B 6, 92 (1956).Google Scholar
3. Stolt, L., Hedströni, J., Kessler, J., Ruckh, M., Veithaus, K. O. and Schock, H.W., Appl. Phys. Lett. 62, 597(1993).Google Scholar
4. Vaccaro, K., Dauplaise, H. M., Davis, A., Spaziani, S. M. and Lorenzo, J. P., Appl. Phys. Lett. 67, 527 (1995).Google Scholar
5. Hodes, G., Electrodeposition of II-VI Semiconductors, Plivsical Electrocliemistry, edited by Rubinstein, I. (M. Dekker Inc, New York, 1995), p. 515.Google Scholar
6. Turner, A. K., Woodcock, J. M., Özsan, E. and Summers, J. G. in Proceedings of the 10th European Solar Energy. Conference (Harwood ed., 1991), p. 791.Google Scholar
7. Isshiki, M., Endo, T., Masiiinoto, K. and Usui, Y., J. Electrochem. Soc. 137, 2697 (1990).Google Scholar
8. Sharma, N.C., Pandhya, D. K., Sehgal, H. K. and Chopra, K. L., Thin Solid Films 59, 157 (1979).Google Scholar
9. Chaudary, G. N., Sardesai, S. N., Sathaye, S. D. and Rao, V. J., J. Mat. Sci. 27, 4647 (1992).Google Scholar
10. Lincot, D., Ortega-Borges, R., Froment, M., Appl. Phys. Lett. 64, 569 (1994).Google Scholar
11. Cachet, H., Cortes, R., Froment, M., Maurin, G., Shramchenco, N., 190th Meeting of the Electrochem. Soc, (1995), in press.Google Scholar
12. Lincot, D., Kampmann, A., Mokili, B., Vedel, J., Cortes, R. and Froment, M., Appl. Phys. Lett. 67, 2355 (1995).Google Scholar
13. Lange, F. F., Science 273, 903 (1996).Google Scholar
14. Froment, M., Bernard, M. C., Cortes, R., Mokili, B. and Lincot, D., J. Electrochem. Soc. 142, 2642 (1995).Google Scholar
15. Ortega-Borges, R. and Lincot, D., J. Electrochem. Soc. 140, 3464 (1993).Google Scholar
16. Gorer, S. and Hodes, G., J. Phys. Chem. 98, 5338 (1994).Google Scholar
17. Kröger, F. A., J. Electrochem. Soc. 125, 2028 (1978).Google Scholar
18. Kaur, I., Pandya, D. K. and Chopra, K. L., J. Electrochem. Soc. 127, 943 (1980).Google Scholar
19. Cortes, R., Froment, M., Mokili, B. and Lincot, D., Phil. Mag. Lett. 73, 209 (1996).Google Scholar
20. Lincot, D., Mokili, B., Froment., M., Cortes, R. and Bernard, M. C., Microscpy, Microstructures and Microanalyses (1996), in press.Google Scholar
21. Lincot, D., Furlong, M. J., Froment, M., Bernard, M. C., Cortes, R., Tiwari, A. N., Krejci, M., Zogg, H. in, Proceedings of the 9th Plwtovoltaic Science and Engineering Conference, Japan (1996), in press.Google Scholar
22. Cachet, H., Maurin, G., Cortès, R., and Froment, M., in preparation.Google Scholar
23. Cowache, P., Lincot, D. and Vedel, J., J. Electrochem. Soc. 136, 1646 (1989).Google Scholar
24. Kampmann, A., Cowache, P., Mokili, B., Vedel, J. and Lincot, D., J. Electroanal. Chem. 387, 53 (1995).Google Scholar
25. Betenekov, N. D., Medvedev, V. P. and Kitaev, G. A., Soviet Radiochem. 20, 369 (1978).Google Scholar
26. Sella, C., Boncorps, P. and Vedel, J., J. Electrochem. Soc. 133, 2043 (1986).Google Scholar
27. Engelken, R. D. and Van Doren, T. P., J. Electrochem. Soc. 132, 2910 (1985).Google Scholar