Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:40:47.207Z Has data issue: false hasContentIssue false

Charge-Transport in Partially-Ordered Regioregular Poly(3-Hexylthiophene) Studied as a Function of the Charge-carrier Density

Published online by Cambridge University Press:  21 March 2011

D.B.A. Rep
Affiliation:
Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The, Netherlands
B.-H. Huisman
Affiliation:
Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
E.J. Meijer
Affiliation:
Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The, Netherlands Philips Research Laboratories, Professor Holstlaan 4, 5656 AA Eindhoven, The, Netherlands
P. Prins
Affiliation:
Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The, Netherlands
T.M. Klapwijk
Affiliation:
Department of Applied Physics and DIMES, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The, Netherlands
Get access

Abstract

We demonstrate that charge-transport in partially-ordered thin films of poly(3- hexylthiophene) is strongly dependent on the charge-carrier density in the film, which we relate to the localized nature of the charge carriers. We base our conclusions on measurements in which the charge-carrier density is varied by electrostatic means (in a transistor geometry) and by in- situ thermal removal of oxygen dopants. For the doping levels investigated, we argue that the removal of oxygen does not induce structural changes in the conjugated polymer, and that it only shifts the Fermi-level of the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and Leeuw, D.M. de, Nature 401, 685 (1999).Google Scholar
2. Schön, J.H., Dodabalapur, A., Bao, Z., Kloc, Ch., Schenker, O., and Batlogg, B., Nature 410, 189 (2001).Google Scholar
3. Meijer, E.J., Matters, M., Herwig, P.T., Leeuw, D.M. de, and Klapwijk, T.M., Appl. Phys. Lett. 76, 3433 (2000); E.J. Meijer, D.B.A. Rep, D.M. de Leeuw, M. Matters, P.T. Herwig, and T.M. Klapwijk, to appear in Synth. Met. Google Scholar
4. McCullough, R.D., Lowe, R.D., Jayaraman, M., and Anderson, D.L., J. Org. Chem. 58, 904 (1993); R.S. Loewe, S.M. Khersonsky, and R.D. McCullough, Adv. Mat. 11, 250 (1999).Google Scholar
5. Leur, R.H.M. van de, Ruiter, B. de, and Breen, J., Synth. Met. 54, 203 (1993).Google Scholar
5. Abdou, M.S.A., Orfino, F.P., Xie, Z.W., Deen, M.J., and Holdcroft, S., Adv. Mat. 6, 838 (1994); M.S.A. Abdou, F.P. Orfino, Y. Son, and S. Holdcroft, J. Am. Chem. Soc. 119, 4518 (1997).Google Scholar
7. Kawai, T., Nakazono, M., and Yoshino, K., J. Mater. Chem. 2, 903 (1992).Google Scholar
8. Vissenberg, M.C.J.M., and Matters, M., Phys. Rev. B 57, 12964 (1998).Google Scholar
9. Lampert, M.A., and Mark, P., Current injection in solids (Academic 1970).Google Scholar
10. see e.g. Peled, A., and Schein, L.B., Chem. Phys. Lett. 153, 422 (1988).Google Scholar
11. Blom, P.W.M., Jong, M.J.M. de, and Munster, M.G. van, Phys. Rev. B 55, R656 (1997).Google Scholar
12. Bässler, H., Phys. Stat. Sol. B 171, 15 (1993).Google Scholar
13. Rakhmanova, S.V., and Conwell, E.M., Appl. Phys. Lett. 76, 3823 (2000).Google Scholar
14. Sze, S.M., Physics of semiconductor devices, 2nd ed. (Wiley 1981).Google Scholar
15. We note that possible structural differences in the RR P3HT layer near the interface and in the bulk are not taken into account when comparing device 1 and 3.Google Scholar