Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:31:13.307Z Has data issue: false hasContentIssue false

Charges and Dipoles at Semiconductor Interfaces

Published online by Cambridge University Press:  01 February 2011

Raymond T. Tung*
Affiliation:
Research Center for Quantum Effect ElectronicsTokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku Tokyo, JAPAN 152-8552
Get access

Abstract

The formation of the Schottky barrier height at metal-semiconductor interfaces has often been discussed in terms of interface states. This paper examines theoretical models that specifically relate defects and other interface states (such as MIGS) to the interface dipole. These models usually rely on the assumption, which is also invoked in most experimental determination of interface state distribution, that the interface dipole can be broken up into the product of an interface charge and an interface distance/width. Various inconsistencies associated with this assumption are discussed, suggesting that the formation of the interface dipole is an integral process which cannot be divided. It is shown that the inclusion of the bond polarization at semiconductor interfaces, proposed in recent work, gives quantitative account of experimental Fermi level pinning effect. In addition, the bond polarization concept can be extended to the theoretical description of band offsets at epitaxial semiconductor heterojunctions. These results underscore the importance of correctly handling the chemistry at semiconductor interfaces in order to understand their electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tung, R.T., Mat. Sci. Eng. R 35, 1 (2001)Google Scholar
2. Bardeen, J., Phys. Rev. 71, 717 (1947)Google Scholar
3. Wieder, H.H., J. Vac. Sci. Technol. 15, 1498–506 (1978).Google Scholar
4. Williams, R.H., Varma, R.R., and Montgomery, V., J. Vac. Sci. Technol. 16, 1418–21 (1979).Google Scholar
5. Spicer, W.E., Chye, P.W., Skeath, P.R., Su, C.Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422–33 (1979).Google Scholar
6. Heine, V., Phys. Rev. 138, A 1689 (1965).Google Scholar
7. Tejedor, C., Flores, F., and Louis, E., J. Phys. C. 10, 2163–77 (1977).Google Scholar
8. Tersoff, J., Phys. Rev. Lett. 52, 465–8 (1984).Google Scholar
9. Monch, W., Phys. Rev. Lett. 58, 1260 (1987)Google Scholar
10. Schmid, P.E., Helv. Phys. Acta. 58, 371 (1985)Google Scholar
11. Fujitani, H. and Asano, S., Phys. Rev. B. 42, 1696–704 (1990).Google Scholar
12. Schilfgaarde, M. van and Newman, N., Phys. Rev. Lett. 65, 2728–31 (1990).Google Scholar
13. Dandrea, R.G. and Duke, C.B., J. Vac. Sci. Technol. B. 11, 1553–8 (1993).Google Scholar
14. Picozzi, S., Continenza, A., Satta, G., Massidda, S., and Freeman, A.J., Phys. Rev. B. 61, 16736–42 (2000).Google Scholar
15. Card, H.C. and Rhoderick, E.H., J. Phys. D. 4, 1589–601 (1971).Google Scholar
16. Fonash, S.J., J. Appl. Phys. 54, 1966–75 (1983).Google Scholar
17. Tung, R.T., Levi, A.F.J., Sullivan, J.P., and Schrey, F., Phys. Rev. Lett. 66, 72–5 (1991).Google Scholar
18. Sullivan, J.P., Tung, R.T., Pinto, M.R., and Graham, W.R., J. Appl. Phys. 70, 7403–24 (1991).Google Scholar
19. Olbrich, A., Vancea, J., Kreupl, F., and Hoffmann, H., Appl. Phys. Lett. 70, 2559–61 (1997).Google Scholar
20. Monch, W., J. Vac. Sci. Technol. B. 17, 1867–76 (1999).Google Scholar
21. Freeouf, J.L., Appl. Phys. Lett. 41, 285 (1982)Google Scholar
22. Louie, S.G., Chelikowsky, J.R., and Cohen, M.L., Phys. Rev. B. 15, 2154–62 (1977).Google Scholar
23. Tung, R.T., J. Appl. Phys. 84, 6078–81 (2000).Google Scholar
24. Tung, R.T., Phys. Rev. B. 64, 205310 (2001)Google Scholar
25. Iczkowsky, R.P. and Margrave, J.L., J. Am. Chem. Soc. 83, 3547 (1961)Google Scholar
26. Mortier, W.J., Ghosh, S.K., and Shankar, S., J. Am. Chem. Soc. 108, 4315 (1986)Google Scholar
27. Rappe, A.K. and Goddard, W.A. III, J. Phys. Chem. 95, 3358–63 (1991).Google Scholar
28. Cioslowski, J. and Stefanov, B.B., J. Chem. Phys. 99, 5151–62 (1993).Google Scholar
29. York, D.M. and Weitao, Y., J. Chem. Phys. 104, 159–72 (1996).Google Scholar
30. Schluter, M., Phys. Rev. B. 17, 5044–7 (1978).Google Scholar
31. Tu, K.N., Appl. Phys. Lett. 27, 221–4 (1975).Google Scholar
32. Daw, M.S. and Smith, D.L., Appl. Phys. Lett. 36, 690–2 (1980).Google Scholar
33. Woodall, J.M. and Freeouf, J.L., J. Vac. Sci. Technol. 21, 574 (1982)Google Scholar
34. Tung, R.T., Phys. Rev. B. 45, 13509–23 (1992).Google Scholar
35. Werner, J., Levi, A.F.J., Tung, R.T., Anzlowar, M., and Pinto, M., J. Appl. Phys. 60, 53–6 (1988).Google Scholar
36. Franciosi, A. and Walle, C.G. Van de, Surf. Sci. Rep. 25, 140 (1996).Google Scholar
37.R.F.W. Bader, Larouche, A., Gatti, C., Carroll, M.T., MacDougall, P.J., and Wiberg, K.B., J. Chem. Phys. 87, 1142–52 (1987).Google Scholar
38. Bader, R.F.W., Atoms in Molecules: A Quantum Theory. 1994, Oxford: Clarendon Press.Google Scholar
39. Tung, R.T. and Gatti, C., to be published (2002).Google Scholar
40. Mattheiss, L.F., Phys. Rev. 134, 970 (1964)Google Scholar
41. Walle, C.G. Van de, Phys. Rev. B. 39, 1871–83 (1989).Google Scholar
42. Hybertsen, M.S., J. Appl. Phys. 64, 555 (1990)Google Scholar
43. Zhang, S.B., Solid St. Commun. 66, 585 (1988)Google Scholar