Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:34:09.375Z Has data issue: false hasContentIssue false

Charge-Defect Thermodynamic Equilibrium and Metastable Defects in Amorphous Silicon

Published online by Cambridge University Press:  21 February 2011

C.M. Fortmann
Affiliation:
IEC, University of Delaware, Newark, DE 19716 USA
J. D. Cohen
Affiliation:
University of Oregon, Eugene, OR 97403 USA
Get access

Abstract

The thermodynamic equilibrium framework first presented at the Spring ′91 MRS meeting is refined and applied. The effect of temperature on band gap is added, resulting in a larger estimate of the loss in entropy associated with dangling bond formation. The magnitude of the entropy loss is consistent with a structural rearrangement. At the temperatures of interest, dangling bond defect formation is exothermic with negative entropy and free energy changes. The thermodynamic framework was used to address some practical issues including the estimation of the saturated dangling bond density resulting from low temperature light soaking and the electronic energy levels of the various dangling bond charge states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D.L. and Wronski, C.R., Appl. Phys. Lett. 31, p. 292 (1977).Google Scholar
2. Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B., Vol. 32, NO. 1, p. 23 (1985).CrossRefGoogle Scholar
3. Redfield, D. and Bube, R.H., in Mat. Res. Soc. Symp. Proc. Vol. 192, (MRS Pittsburgh, PA 1990), p. 273 (1990).Google Scholar
4. Adler, D. in Semiconductors and Semimetals Vol. 21 Part A edited by Pankove, J.I., Academic Press, NY, (1984), p. 291.Google Scholar
5. Branz, H. and Silver, M., Mat. Res. Soc. Symp. Proc. Vol. 192, p. 261.CrossRefGoogle Scholar
6. Zarfar, S. and Schiff, E.A., Phys. Rev. Lett. Vol. 66, No. 11, 18 Mar.(1991), p. 1493.Google Scholar
7. Fortmann, C. M., Dawson, R.M. and Wronski, C.R., J. Non-Crystalline Solids, 137&138 (1991) pp. 207210.Google Scholar
8. Fortmann, C. M., Dawson, R.M., and Wronski, C.R., Mat. Res. Soc. Symp. Proc. Vol. 219, (1991) p. 63.Google Scholar
9. Dickerson, R. E., Molecular Thermodynamics, W. A. Benjamin, INC., Menlo Park, CA (1969), p. ix.Google Scholar
10. Winer, K., Phys. Rev. B Vol. 41, No. 17 (1991) p.12150.Google Scholar
11. McMahon, T. J., Solar Cells, Vol. 30, Nos. 1–4, (1991), p. 235.Google Scholar
12. Gelatos, A. V., Cohen, J.D., and Harbison, J.P., Appl. Phys. Lett., Vol. 49, No. 12, 22 Sept. (1986), p. 722.Google Scholar
13. Fischer, D., Pellaton, N., Keppner, H., Shah, A., and Fortmann, C.M., Effects of Low Level Graded I-layer doping., in these proceedings.Google Scholar
14. Leen, T. M., and Cohen, J. D., Journal of Non-Crystalline Solids 137&138 (1991) p. 319322.CrossRefGoogle Scholar
15. Fortmann, C. M., Dawson, D.M., and Wronski, C.R., to be published.Google Scholar
16. Fischer, D., Pellaton, N., Keppner, H., Shah, A., and Fortmann, C.M., ‘Room Temperature Recovery of Light Induced…’, elsewhere in these proceedings.Google Scholar
17. von Roedern, B., private communication.Google Scholar
18. Benatar, L., Grimbergen, M., Redfield, D., and Bube, R.H., Proc. Mat. Res. Soc. Symp. Vol. 219, 21 MRS, Pittsburgh, PA (1991).Google Scholar