Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T17:24:14.233Z Has data issue: false hasContentIssue false

Charge Trapping by Deep Donors in Si-Doped AlxGa1-xAS

Published online by Cambridge University Press:  28 February 2011

P. M. Mooney
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
N. S. Caswell
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
P. M. Solomon
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
S. L. Wright
Affiliation:
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
Get access

Abstract

The kinetics of charge capture by deep donors in AlxGa1-xAs have been measured. The time dependence indicates that a single energy cannot be used to describe the trap. A model assuming thermally activated capture into a resonance in the conduction band with a range of energies gives excellent fits to the data and provides a measure of the energy range for the trap. This model is consistent with the large lattice relaxation model for DX centers. The increase of the activation energy for capture as the Al mole fraction is decreased contradicts the model which attributes the decay of the persistent photoconductivity to tunneling through the heterojunction barrier in modulationdoped structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.For example see Kunzel, H., et. al., Applied Physics A 32, 69 (1983) and H. Kunzel et. al., J. Electron. Mat. 13, 281 (1984).Google Scholar
2. Lang, D. V., Logan, R. A., and Jaros, M., Phys. Rev. B 19, 1015 (1979).Google Scholar
3. Chand, N., et. al., Phys Rev. B 30, 4481 (1984).Google Scholar
4. Schubert, E. F., Fischer, A., and Ploog, K., submitted to Phys. Rev. B.Google Scholar
5. Schubert, E.F, Knecht, J., and Ploog, K., J. Phys. C: Solid State Phys. 18 L215 (1985).Google Scholar
6. Mooney, P. M., Solomon, P. M., and Theis, T. N., to appear in the Proceedings of the International Symposium on GaAs and Related Compounds, Biarritz, France, September, 1984.Google Scholar
7. Omling, P., Samuelson, L., and Grimmeiss, H. J., J. Appl. Phys. 54, 5117 (1983).Google Scholar
8. Tachikawa, M., Mizuta, M., and Kukimoto, H., Jpn. J Appl. Phys. 23 1594, (1984).Google Scholar
9. Rocket, P. I. and Peaker, A. R., Electronics Letters 17, 838 (1981).Google Scholar
10. Stevenard, D. and Bourgoin, J. C., J. Appl. Phys. 55, 1477 (1984).Google Scholar
11. Pons, D., J. Appl. Phys. 55, 3644 (1984).Google Scholar
12. Meijer, E., Grimmeiss, H. J., and Ledebo, L-A., J. Appl. Phys. 55, 4266 (1984).CrossRefGoogle Scholar