Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:26:57.705Z Has data issue: false hasContentIssue false

Charge Transport Properties of a Partially Reduced V2O5 Xerogel Intercalated with a Polymer Electrolyte

Published online by Cambridge University Press:  15 February 2011

Joyce Albritton Thomas
Affiliation:
Northwestern University, Department of Electrical Engineering and Computer Science, Evanston, IL 60208-3118
Grant M. Kloster
Affiliation:
Northwestern University, Department of Chemistry, Evanston, IL 60208-3113
D. Shriver
Affiliation:
Northwestern University, Department of Chemistry, Evanston, IL 60208-3113
C. R. Kannewurf
Affiliation:
Northwestern University, Department of Electrical Engineering and Computer Science, Evanston, IL 60208-3118
Get access

Abstract

Recently, there has been considerable interest in advanced materials and processing techniques for practical applications. V2O5 xerogels have generated much attention because they are layered materials that undergo reversible redox intercalation with lithium. The sol-gel process has been used to intercalate V2O5 xerogels with the polymer electrolyte, oxymethylene linked poly(ethylene oxide) - lithium triflate [(a-PEO)n(LiCF3SO3)]. The resulting nanocomposite is a mixed ionic-electronic conductor in which the ionic charge carriers in the polymer electrolyte are in intimate contact with the electronic charge carriers in the V205 xerogel. Variable-temperature electronic conductivity and thermoelectric power measurements have been performed to examine the charge transport properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kanatzidis, M. G., Wu, C.-G., Marcy, H. O., DeGroot, D. C., and Kannewurf, C. R., Chem. Mater. 2, 222224 (1990).Google Scholar
2 Park, H.-K. and Smyrl, W. H., J. Electrochem. Soc. 141 (3), L25L26 (1994).Google Scholar
3 Ruiz-Hitzky, E., Aranda, P., and Casal, B., J. Mater. Chem. 2, 581582 (1992).Google Scholar
4 Soga, N. and Senna, M., Solid State Ionics 63–65, 471478 (1993).Google Scholar
5 DeGroot, D. C., Schindler, J. L., Kannewurf, C. R., Liu, Y.-J., Wu, C.-G., and Kanatzidis, M. G. in Submicron Multiphase Materials, edited by Baney, R., Gilliom, L. R., Schmidt, H., and Hirano, S.-I. (Mater. Res. Soc. Proc. 274, Pittsburgh, PA, (1992) pp. 133138.Google Scholar
6 Wu, C.-G., Kanatzidis, M. G., Marcy, H. O., DeGroot, D. C., and Kannewurf, C. R. in Lower-Dimensional Systems and Molecular Electronics, edited by Metzger, R. M. (Plenum Press, New York, (1991) pp. 427433.Google Scholar
7 West, K., Zachau-Christiansen, B., Jacobsen, T., and Seaarup, S., Electrochimica Acta. 38 (9), 12151220 (1993).Google Scholar
8 Baddour, R., Pereira-Ramos, J. P., Messina, R., and Perichon, J., J. Electroanal. Chem. 314, 81101 (1991).Google Scholar
9 Kumagai, N. and Tanno, K., Electrochimica Acta. 28 (1), 1722 (1983).Google Scholar
10 Pereira-Ramos, J. P., Baddour, R., Bach, S., and Baffier, N., Solid State Ionics 53–56, 701709 (1992).Google Scholar
11 Minett, M. G. and Owen, J. R., J. Power Sources 28, 397408 (1989).Google Scholar
12 Livage, J., Chem. Mater. 3, 578593 (1991).Google Scholar
13 Nicholas, C. V., Wilson, D. J., Booth, C., Giles, J. R. M., British Polym. J., 20 (3), 289292 (1988).Google Scholar
14 Lyding, J. W., Marcy, H. O., Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 7680 (1988).Google Scholar
15 Marcy, H. O. 5th, Marks, T. J., and Kannewurf, C. R., IEEE Trans. Instrum. Meas. 39 (5), 756760 (1990).Google Scholar
16 Roy, R., Sen, S. K., Digar, M., and Bhattacharyya, S. N., J. Phys.: Condens. Matter 3, 78497856 (1991).Google Scholar
17 Roth, S., in Hopping Transport in Solids, edited by Pollack, M. and Shklovskii, B. (Elsevier Science Publishers B.V., North-Holland, (1991), p. 377.Google Scholar
18 Mott, N., Conduction in Non-Crystalline Materials (Oxford University Press, New York, (1987), p. 38.Google Scholar