Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T06:49:12.506Z Has data issue: false hasContentIssue false

Charge Transport Phenomena Unique to Diamond

Published online by Cambridge University Press:  13 March 2014

Kiran K. Kovi
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Nattakarn Suntornwipat
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Saman Majdi
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Markus Gabrysch
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Johan Hammersberg
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Jan Isberg
Affiliation:
Division of Electricity, Department of Engineering Sciences, Box 534, Ångström laboratory, Uppsala University, SE-75121,Uppsala, Sweden.
Get access

Abstract

Diamond is a unique material in many respects. One of the most well-known extreme properties of diamond is its ultrahardness. This property of diamond actually turns out to have interesting consequences for charge transport, in particular at low temperatures. In fact, the strong covalent bonds that give rise to the ultrahardness results in a lack of short wavelength lattice vibrations which has a strong impact on both electron and hole scattering. In some sense diamond behaves more like a vacuum than other semiconductor materials. In this paper we describe some interesting charge transport properties of diamond and discuss possible novel electronic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schiff, E.A., Devlen, R.I., Grahn, H.T., Tauc, J., and Guha, S., Appl. Phys. Lett. 54, 1911 (1989).CrossRefGoogle Scholar
Tove, P.A. and Andersson, L.G., Solid State Electron. 16, 961 (1973).CrossRefGoogle Scholar
Kramberger, G., Cindro, V., Mandić, I., Mikuž, M., Milovanović, M., Zavrtanik, M., and Žagar, K., IEEE Trans. Nucl. Sci. 57, 2294 (2010).CrossRefGoogle Scholar
Fink, J., Lodomez, P., Krüger, H., Pernegger, H., Weilhammer, P., and Wermes, N., Nucl. Instruments Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 565, 227 (2006).Google Scholar
Isberg, J., Hammersberg, J., Johansson, E., Wikström, T., Twitchen, D.J., Whitehead, A.J., Coe, S.E., and Scarsbrook, G.A., Science 297, 1670 (2002).CrossRefGoogle Scholar
Pernegger, H., Roe, S., Weilhammer, P., Eremin, V., Frais-Kölbl, H., Griesmayer, E., Kagan, H., Schnetzer, S., Stone, R., Trischuk, W., Twitchen, D., and Whitehead, A., J. Appl. Phys. 97, 1 (2005).CrossRefGoogle Scholar
Oshiki, Y., Kaneko, J.H., Fujita, F., Homma, A., Watanabe, H., Meguro, K., Yamamoto, Y., Imai, T., Sato, K., Tsuji, K., Kawamura, S., and Furusaka, M., Diam. Relat. Mater. 17, 833 (2008).CrossRefGoogle Scholar
Nesladek, M., Bogdan, A., Deferme, W., Tranchant, N., and Bergonzo, P., Diam. Relat. Mater. 17, 1235 (2008).CrossRefGoogle Scholar
Gabrysch, M., Majdi, S., Twitchen, D.J., and Isberg, J., J. Appl. Phys. 109, (2011).Google Scholar
Fujita, F., Oshiki, Y., Kaneko, J.H., Homma, A., Tsuji, K., Meguro, K., Yamamoto, Y., Imai, T., Watanabe, H., Teraji, T., Kawamura, S., and Furusaka, M., Diam. Relat. Mater. 15, 1921 (2006).CrossRefGoogle Scholar
Jansen, H., Dobos, D., Eremin, V., Pernegger, H., and Wermes, N., Proc. 2nd Int. Conf. Technol. Instrum. Part. Phys. TIPP 2011 37, 2005 (2012).CrossRefGoogle Scholar
Tranchant, N., Nesladek, M., Tromson, D., Remes, Z., Bogdan, A., and Bergonzo, P., Phys. Status Solidi Appl. Mater. 204, 3023 (2007).CrossRefGoogle Scholar
Isberg, J., Majdi, S., Gabrysch, M., Friel, I., and Balmer, R.S., Diam. Relat. Mater. 18, 1163 (2009).CrossRefGoogle Scholar
Gabrysch, M., Marklund, E., Hajdu, J., Twitchen, D.J., Rudati, J., Lindenberg, A.M., Caleman, C., Falcone, R.W., Tschentscher, T., Moffat, K., Bucksbaum, P.H., Als-Nielsen, J., Nelson, A.J., Siddons, D.P., Emma, P.J., Krejcik, P., Schlarb, H., Arthur, J., Brennan, S., Hastings, J., and Isberg, J., J. Appl. Phys. 103, (2008).CrossRefGoogle Scholar
Isberg, J., Gabrysch, M., Majdi, S., Kovi, K.K., and Twitchen, D., Solid State Sci. 13, 1065 (2011).CrossRefGoogle Scholar
Isberg, J., Tajani, A., and Twitchen, D.J., Phys. Rev. B - Condens. Matter Mater. Phys. 73, (2006).CrossRefGoogle Scholar
Hammersberg, J., Isberg, J., Johansson, E., Lundström, T., Hjortstam, O., and Bernhoff, H., Diam. Relat. Mater. 10, 574 (2001).CrossRefGoogle Scholar
Isberg, J., Gabrysch, M., Tajani, A., and Twitchen, D., Semicond. Sci. Technol. 21, 1193 (2006).CrossRefGoogle Scholar
Majdi, S., Kovi, K.K., Hammersberg, J., and Isberg, J., Appl. Phys. Lett. 102, 152113 (2013).CrossRefGoogle Scholar
Willatzen, M., Cardona, M., and Christensen, N.E., Phys. Rev. B Condens. Matter 50, 18054 (1994).CrossRefGoogle Scholar
Löfas, H., Grigoriev, A., Isberg, J., and Ahuja, R., AIP Adv. 1, 032139 (2011).CrossRefGoogle Scholar
Pavone, P., Karch, K., Schutt, O., Windl, W., Strauch, D., Giannozzi, P., and Baroni, S., Phys. Rev. B Condens. Matter 48, 3156 (1993).CrossRefGoogle Scholar
Gunn, J.B., Solid State Commun. 1, 88 (1963).CrossRefGoogle Scholar
Ridley, B.K. and Watkins, T.B., Proc. Phys. Soc. 78, 293 (1961).CrossRefGoogle Scholar
Kroemer, H., Proc. IEEE 52, 1736 (1964).CrossRefGoogle Scholar
Isberg, J., Gabrysch, M., Majdi, S., and Twitchen, D., Appl. Phys. Lett. 100, 172103 (2012).CrossRefGoogle Scholar
Isberg, J., Gabrysch, M., Hammersberg, J., Majdi, S., Kovi, K.K., and Twitchen, D.J., Nat. Mater. 12, 760 (2013).CrossRefGoogle Scholar
Nebel, C.E., Nat Mater 12, 690 (2013).CrossRefGoogle Scholar
Cao, T., Wang, G., Han, W., Ye, H., Zhu, C., Shi, J., Niu, Q., Tan, P., Wang, E., Liu, B., and Feng, J., Nat Commun 3, 887 (2012).CrossRefGoogle Scholar
Mak, K.F., He, K., Shan, J., and Heinz, T.F., Nat Nano 7, 494 (2012).CrossRefGoogle Scholar
Zeng, H., Dai, J., Yao, W., Xiao, D., and Cui, X., Nat Nano 7, 490 (2012).CrossRefGoogle Scholar
Löfås, H., Grigoriev, A., Isberg, J., and Ahuja, R., AIP Adv. 1, 032139 (2011).CrossRefGoogle Scholar
Naka, N., Fukai, K., Handa, Y., and Akimoto, I., Phys. Rev. B 88, 035205 (2013).CrossRefGoogle Scholar
Nava, F., Canali, C., Jacoboni, C., Reggiani, L., and Kozlov, S.F., Solid State Commun. 33, 475 (1980).CrossRefGoogle Scholar
Gheeraert, E., Casanova, N., Koizumi, S., Teraji, T., and Kanda, H., Diam. Relat. Mater. 10, 444 (2001).CrossRefGoogle Scholar
Wu, G.Y., Lue, N.-Y., and Chang, L., Phys. Rev. B 84, 195463 (2011).CrossRefGoogle Scholar