Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T19:56:06.940Z Has data issue: false hasContentIssue false

Charge induced Variation of the Magnetization in Nanoporous Ni-Pd

Published online by Cambridge University Press:  15 February 2011

Christian Lemier
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Sadhan Ghosh
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
R. N. Viswanath
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany
Guang-Tao Fei
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, P. R.China
Jörg Weissmüller
Affiliation:
Institut für Nanotechnologie, Forschungszentrum Karlsruhe, Karlsruhe, Germany Fachrichtung Technische Physik, Universität des Saarlandes, Saarbrücken, Germany
Get access

Abstract

Changes in the electronic structure in superficial space-charge regions may substantially affect the properties of metals near their surface. In materials with a nanoscale porosity and with a high surface to volume ratio, changes in the properties of even a thin surface layer may have a noticeable effect on the properties of the entire material. In nanoporous metals immersed in an electrolyte, the space charge can be induced as a part of the electric double layer at the metal-electrolyte interface. Here we present first experiments on the effect of surface charging in a nanoporous metal on the magnetism. We report reversible changes in the magnetic moment in Ni-Pd alloys. As possible origins of the dependency of the magnetization on the surface charge density we discuss band filling and, alternatively, magnetostriction. X-ray diffraction and dilatometry reveal a considerable strain amplitude, about of 6×10-4, resulting from surface charging; this corresponds to a surface-induced pressure in the crystal lattice, in the order of 0.3 GPa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gleiter, H., Weissmüller, J., Wollersheim, O., Würschum, R., Acta Mater., 49 737 (2001)Google Scholar
2. Ibach, H., Lüth, H., Festkörperphysik, Springer Verlag (1995)Google Scholar
3. Weissmüller, J., Viswanath, R. N., Kramer, D., Zimmer, P., Würschum, R., Gleiter, H., Science, 300, 312 (2003)Google Scholar
4. Ferrando, W. A. et al. , Phy. Rev.B, 5, 4657 (1972)Google Scholar
5. Beille, J., Chouteau, G., J. Phys. F, 5 721 (1975)Google Scholar
6. Tatsumoto, E., Jujiwara, H., Okamoto, T., J. Phys. Soc. Japan, 25 1734 (1968)Google Scholar
7. Gerhard, W., Razavi, F., Schilling, J. S., Hüser, D., Mydosh, J. A., Phys. Rev. B 24, 6744 (1981)Google Scholar
8. Gleiter, H., Prog. Mater. Sci., 33 223 (1989)Google Scholar
9. Kramer, D., Viswanath, R. N., Weissmüller, J., Nano Letters, 4, 793 (2004)Google Scholar
10. Brunauer, S., Emmett, P. H., and Teller, E.. J. Am. Chem. Soc., 60, 309 (1938)Google Scholar
11. Mathon, J., J. Phys. F, 2 159 (1972)Google Scholar
12. Bozorth, R. M., Williams, H. J., Rev. Mod. Phys., 17, 7280. 601, 615 (1945)Google Scholar
13. Tokunaga, T., Tange, H., Goto, M., J. Phys. Soc. Japan, 34 1103 (1973)Google Scholar
14. Kouvel, J. S. and Wilson, R. H., J. Appl. Phys., 32 435 (1960)Google Scholar
15. The temperature parameter of Ref. [13], which is normalized to TC, was converted to the absolute temperature scale using the values of TC in Ref. [4].Google Scholar