Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T18:00:24.361Z Has data issue: false hasContentIssue false

Characterizations of Ultra-thin Dielectrics Grown by Microwave Afterglow O2/N2O Plasma Oxidation at Low Temperature with Rapid Thermal Annealing

Published online by Cambridge University Press:  15 February 2011

Po-ching Chen
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan 30043, Republic of China
Klaus Yung-jane Hsu
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan 30043, Republic of China
Joseph J. Loferski
Affiliation:
On leave from Brown University, Providence, R.I. 02912, U.S.A
Huey-liang Hwang
Affiliation:
Department of Electrical Engineering, National Tsing Hua University, Hsin-chu, Taiwan 30043, Republic of China
Get access

Abstract

Microwave afterglow plasma oxidation at a low temperature (600 °C ) and rapid thermal annealing (RTA) were combined to grow high quality ultra-thin dielectrics. This new approach has a low thermal budget. The mid-gap interface state density of oxides pretreated in N2O plasma was decreased to about 5×1010 cm−2eV−1 after rapid thermal annealing at 950 °C.It was found that RTA is very effective for relieving the oxide stress and reducing the interface state density. Nitrogen incorporated in oxides by the N2O plasma pretreatment of the Si surface helped to reduce the interface state density. Microstructures of ultra-thin oxide grown by microwave afterglow oxidation with or without RTA were revealed by extended-X-ray-absorption-finestructure (EXAFS) and X-ray photoelectron spectroscopy (XPS) analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Moslehi, M. M., Saraswat, K. C. and Shatas, S. C.: Appl. Phys. Lett. 47, 1113 (1985).Google Scholar
2) Joshi, A. B., Ahn, J. and Kwong, D. L.: IEEE Electron Device Lett. 14,560 (1993).Google Scholar
3) Ahn, J., Kim, J., Lo, G. Q. and Kwong, D. L.: Appl. Phys. Lett. 60, 2809 (1992).Google Scholar
4) Liu, Z., Wann, H. J., Ko, P. K., Hu, C. and Cheng, Y. C.: IEEE Electron Device Lett. 13, 519 (1992).Google Scholar
5) Shih, D. K., Chang, W. T., Lee, S. K., Ku, Y. H. and Kwong, D. L.: Appl. Phys. Lett. 52, 1698 (1988).Google Scholar
6) Bhat, M., Han, L. K., Yoon, G. W., Yan, J., and Kwong, D. L.: Proc. Int. Electron Devices and Material Symp., 1994, p. 1-1-1.Google Scholar
7) Vinkier, C., Coeckelberghs, P., Stevens, G., Heyns, M. and Jaegere, S. De: J. Appl. Phys. 62, 1450 (1987).Google Scholar
8) Chen, P. C., Hsu, K. Y. J., Lin, J. Y. and Hwang, H. L., J. Appl. Phys. 76, (1994) 5508.Google Scholar
9) Bjorkman, C. H., Fitch, J. T. and Lucovsky, G.: Appl. Phys. Lett. 56, 1983 (1990).Google Scholar
10) Fitch, J. T., Bjorkman, C. H., Lukovsky, G., Pollak, F. H. and Yin, X.: J. Vac. Sci. & Technol. B7, 775 (1989).Google Scholar
11) Chen, P. C., Hsu, K. Y. J., Lin, J. Y. and Hwang, H. L.: to be published in Jpn. J. Appl. Phys. (1994).Google Scholar
12) Stöhr, J., Johansson, L., Lindau, I. and Pianetta, P., Phys. Rev. B 20, 664 (1979).Google Scholar
13) Grunthaner, F. J., Grunthaner, P. J., Vasquez, R. P., Lewis, B. F. and Maserjian, J., Phys. Rev. Let. 43, 1683 (1979).Google Scholar