Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:05:35.508Z Has data issue: false hasContentIssue false

Characterizations of Nanostructured Films as Responsive Electrode Materials

Published online by Cambridge University Press:  17 March 2011

Nancy Kariuki
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Jin Luo
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Laura Moussa
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Lisa B. Israel
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Chuan-Jian Zhong
Affiliation:
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902
Maria Hepel
Affiliation:
Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676
Get access

Abstract

Nanostructured thin films were assembled as metal-responsive electrode materials from monolayer-capped gold nanoparticles (2 nm) and carboxylic acid functionalized alkyl thiol linkers via an exchange-crosslinking-precipitation reaction pathway. The network assemblies have open frameworks in which void space forms channels or chambers with the nanometer sized cores defining its size and the shell structures defining its chemical specificity. Such nanostructures were investigated as responsive materials for the detection of metal ion fluxes. Cyclic voltammetry, in-situ electrochemical quartz-crystal nanobalance, and surface infrared reflection spectroscopy techniques were used to characterize the interfacial redox reactivity and mass fluxes at the nanostructured electrode materials. The system showed remarkable reversible mass loading arising from incorporation of ionic species into the film. The diagnostic stretching bands of the carboxylic and carboxylate groups at the shell allowed the identification and assessment of the interfacial carboxylate-metal ion reactivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hostetler, M. J., Murray, R.W., Curr. Opin. Colloid Interface Sci., 2, 42 (1997).Google Scholar
2 Martin, C. R., Mitchell, D.T., Anal. Chem., 70, 322A (1998).Google Scholar
3 Keating, C. D., Musick, M. D., Lyon, L.A., Brown, K. R., Baker, B. E., Pena, D. J., Feldheim, D. L., Mallouk, T. E., Natan, M., J. ACS Symp. Ser., 679, 7 (1997).Google Scholar
4 Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W., Langmuir, 14, 17 (1998).Google Scholar
5 Brust, M., Fink, J., Bethell, D., Schiffrin, D.J., Kiely, C., J. Chem. Soc., Chem. Commun., 1655 (1995).Google Scholar
6 Templeton, A. C., Wuelfing, W. P., Murray, R. W., Acc. Chem. Res., 33, 27 (2000).Google Scholar
7 Hostetler, M.J., Wingate, J.E., Zhong, C.J., Harris, J.E., Vachet, R.W., Clark, M.R., Londono, J.D., Green, S.J., Stokes, J.J., Wignall, G.D., Glish, G.L., Porter, M.D., Evans, N.D., Murray, R.W., Langmuir, 14, 17 (1998).Google Scholar
8 Zhang, F.X., Zheng, W.X., Maye, M.M., Lou, Y., Han, L.; Zhong, C.J., Langmuir, 16, 9639 (2000).Google Scholar
9 Brust, M., Bethell, D., Kiely, C.J., Schiffrin, D.J., Langmuir, 14, 5425 (1998).Google Scholar
10 Musick, M.D., Pena, D.J., Botsko, S.L., McEvoy, T.M., Richardson, J.N., Natan, M.J., Langmuir, 15, 844 (1999).Google Scholar
11 Hostetler, M.J., Green, S.J., Stokes, J.J., Murray, R.W., J. Am. Chem. Soc., 118, 4212 (1996).Google Scholar
12 Hostetler, M.J., Templeton, A.C., Murray, R.W., Langmuir, 15, 3782 (1999).Google Scholar
13 Zheng, W.X., Maye, M.M., Leibowitz, F.L., Zhong, C.J., Anal. Chem., 72, 2190 (2000).Google Scholar
14 Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.J., J. Chem. Soc., Chem. Commun., 801 (1994).Google Scholar
15 Leibowitz, F.L., Zheng, W.X., Maye, M.M., Zhong, C.J., Anal. Chem., 71, 5076 (1991).Google Scholar
16 Miller, T.C., Holcombe, J.A., Anal. Chem. 71, 2667 (1999).Google Scholar