Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T02:33:36.786Z Has data issue: false hasContentIssue false

Characterization on the Viscoelastic Property of PDMS in the Frequency Domain

Published online by Cambridge University Press:  28 January 2011

Ping Du
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
I-Kuan Lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A. Global Science & Technology, Greenbelt, MD 20770, U.S.A.
Hongbing Lu
Affiliation:
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Xi lin
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Xin Zhang
Affiliation:
Department of Mechanical Engineering, Boston University, Boston MA 02215, U.S.A.
Get access

Abstract

A key issue in using Polydimethylsiloxane (PDMS) based micropillars as cellular force transducers is obtaining an accurate characterization of mechanical properties. The Young’s modulus of PDMS has been extended from a constant in the ideal elastic case to a time-dependent function in the viscoelastic case. However, the frequency domain information is of more practical interest in interpreting the complex cell contraction behavior. In this paper, we reevaluated the Young’s relaxation modulus in the time domain by using more robust fitting algorithms than previous reports, and investigated the storage and loss moduli in the frequency domain using the Fourier transform technique. With the use of the frequency domain modulus and the deflection of micropillars in the Fourier series, the force calculation can be much simplified by converting a convolution in the time domain to a multiplication in the frequency domain.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K. and Chen, C. S., Proc. Natl. Acad. Sci. USA. 100, 14841489 (2003).Google Scholar
2. Zhao, Y. and Zhang, X., 18th IEEE MEMS, Miami Beach, FL, 398404 (2005).Google Scholar
3. Zheng, X. and Zhang, X., J. Micromech. Microeng. 18, 125006 (2008).Google Scholar
4. Xiang, Y. and LaVan, D. A., Appl. Phys. Lett. 90, 133901 (2007).Google Scholar
5. Lin, I. K., Ou, K. S., Liao, Y. M., Liu, Y., Chen, K. S. and Zhang, X., J. Microelectromech. Syst. 18, 10871099 (2009).Google Scholar
6. Lin, I. K., Liao, Y. M., Liu, Y., Ou, K. S., Chen, K. S. and Zhang, X., Appl. Phys. Lett. 93, 251907 (2008).Google Scholar
7. Du, P., Lin, I. K., Lu, H. and Zhang, X., J. Micromech. Microeng. 20, 095016 (2010).Google Scholar
8. Huang, G., Wang, B. and Lu, H., Mech. Time-Depend. Mater. 8, 345364 (2004).Google Scholar
9. White, C. C., Vanlandingham, M. R., Drzal, P. L., Chang, N. K. and Chang, S. H., J. Polym. Sci. Pt. B-Polym. Phys. 43, 18121824 (2005).Google Scholar
10. Herbert, E. G., Oliver, W. C. and Pharr, G. M., J. Phys. D Appl. Phys. 41, 074021 (2008).Google Scholar
11. Herbert, E. G., Oliver, W. C., Lumsdaine, A. and Pharr, G. M., J. Mater. Res. 24, 626637 (2009).Google Scholar
12. Le Rouzic, J., Delobelle, P., Vairac, P. and Cretin, B., Eur. Phys. J.-Appl. Phys. 48, 14 (2009).Google Scholar
13. Wu, C. L., Lin, H. C., Hsu, J. S., Yip, M. C. and Fang, W. L., Thin Solid Films 517, 48954901 (2009).Google Scholar
14. Brinson, H. F. and Brinson, L. C., Polymer Engineering Science and Viscoelasticity, An Introduction. (Springer, New York, 2008).Google Scholar