Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:32:18.595Z Has data issue: false hasContentIssue false

Characterization of Visible and Infrared (1.54 μm) Luminescence from Er-doped Porous Si

Published online by Cambridge University Press:  10 February 2011

R. White
Affiliation:
Hampton University, Research Center for Optical Physics, Department of Physics Hampton, VA 23668
X. Wu
Affiliation:
Hampton University, Research Center for Optical Physics, Department of Physics Hampton, VA 23668
U. Hömmerich
Affiliation:
Hampton University, Research Center for Optical Physics, Department of Physics Hampton, VA 23668
F. Namavar
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01876
A. M. Cremins-Costa
Affiliation:
Spire Corporation, One Patriots Park, Bedford, MA 01876
Get access

Abstract

Results of a photoluminescence excitation (PLE) study of Er-implanted porous Si (Er: PSi) are presented. Erbium was implanted at a dose of 1×1015 Er/cm2 at 380 keV and annealed for 30 minutes at 6507deg;C. We observed a nearly identical PLE intensity behavior from 1.54 μm and visible-emitting Er: PSi. This observation indicates that both visible and infrared photoluminescence (PL) arise from carrier mediated processes, and that the 1.54 μm Er3+ PL is related to the porous Si nanostructures. Measurements of the temperature dependence (15–375K) of Er3+ PL intensity and lifetime are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Canham, I. L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Lei Wang, Wilson, M. T., and Haegel, N. M., Appl. Phys. Lett. 62, 1113 (1993).Google Scholar
3. Namavar, F., Lu, F., Perry, C. H., Cremins, A., Kalkhoran, N. M., Soref, R. A., J. Appl. Phys. 77, 4813 (1995).Google Scholar
4. Kimura, T., Yokoi, A., Horiguchi, H., Saito, R., Ikoma, T., and Sato, A., Appl. Phys. Lett. 65, 983 (1994).Google Scholar
5. Dorofeev, A. M., Gaponenko, N. V., Bondarenko, V. P., Bachilo, E. E., Kazuchits, N. M., Leshok, A. A., Troyanova, G. N., Voroso, N. N., Borisenko, V. E., Gnaser, H., Bock, W., Becker, P., and Oechsner, H., J. Appl. Phys. 77, 2679 (1995).Google Scholar
6. Shin, J. H., van den Hoven, G. N., and Polman, A., Appl. Phys. Lett. 66, 2379 (1995).Google Scholar
7. Favennec, P. N, L'Harldon, H., Moutonnet, D., Salvi, M., and Gauneau, M., Mat. Res. Soc. Symp. Proc. 301, 181 (1993).Google Scholar
8. Hömmerich, U., Namavar, F., Cremins-Costa, A. M., and Bray, K. L., Appl. Phys. Lett. 68, 1951 (1996). Hömmerich, U., Wu, X., Namavar, F., Cremins-Costa, A. M., and Bray, K. L., Mat. Res. Soc. Symp. Proc. Vol.405, 1996, in press.Google Scholar
9. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Camera, A., and Spinella, C., Phys. Rev. B 48, 16313 (1994).Google Scholar
10. Priolo, F., Franzò, G., Coffa, S., Polman, A., Libertino, S., Barklie, R. and Carey, D., J. Appl. Phys. 78, 3874 (1995).Google Scholar
11. van den Hoven, G. N., Shin, J. H., Polman, A., Lombardo, S. and Campisano, S. U., J. Appl. Phys. 78, 2642 (1995).Google Scholar