Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:17:39.906Z Has data issue: false hasContentIssue false

Characterization of Thin Metal Films by SIMS, AUGER, and TEM

Published online by Cambridge University Press:  22 February 2011

B. K. Furman
Affiliation:
IBM Corporation, Poughkeepsie, NY 12602
J. P. Benedict
Affiliation:
IBM Corporation, Poughkeepsie, NY 12602
K. L. Granato
Affiliation:
IBM Corporation, Poughkeepsie, NY 12602
R. M. Prestipino
Affiliation:
IBM Corporation, Poughkeepsie, NY 12602
D. Y. Shih
Affiliation:
IBM Corporation, East Fishkill, Hopewell Junction, NY 12533
Get access

Abstract

Secondary ion mass spectrometry (SIMS), Auger spectroscopy, and transmission electron microscopy (TEM) were applied to study Au, Cu, Ti, Ti-W, Cr, Al-Cu, and Al metal films deposited on both Si and ceramic substrates.

SIMS analysis of as-deposited metal films was used to characterize impurity levels, both metallic and gaseous, incorporated during deposition. The results revealed that the levels varied under generally accepted deposition conditions. As-deposited and annealed films were examined with SIMS, Auger, and TEM to study interdiffusion, grain growth, and impurity segregation as a function of processing conditions. Metallic impurities were observed to modify Au/Ti interdiffusion. Large variations in residual H, C, O, and N were observed in as-deposited Al and Al-Cu films.

Hydrogen, incorporated during deposition of Ti films, was observed to redistribute after thermal annealing in N2 or thermal cycling in forming gas (N2-10% H2). Samples thermally cycled in forming gas absorbed additional H into the Ti layer. SIMS/ion imaging was used to study the incorporation and segregation of H. Differences in H behavior were observed to be dependent upon metal structure, composition, and substrate material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wittmer, M., J. Vac. Sci. Technol. A. 2, 273 (1984).CrossRefGoogle Scholar
2. Tu, K. N., J. Vac. Sci. Technol. A. 2, 216 (1984).CrossRefGoogle Scholar
3. Morabito, J. M., Thomas, J. H. III and Lesh, N. G., IEEE Trans on Parts, Hybrids, and Packaging. PEP-11, 253 (1975).Google Scholar
4. Ho, C. W., Chance, D. A., Bajorek, C. H., and Acosta, R. E., IBM J. Res. Develop. 26, 286 (1982).CrossRefGoogle Scholar
5. Orent, T. W. and Wagner, R. A., J. Vac. Sci. Technol. B. 3, 844 (1983).CrossRefGoogle Scholar
6. Blattner, R. J., and Evans, C. A. Jr., SEM, Inc., ed. by Johari., O M. 1, 55 (Chicago, IL, 1980).Google Scholar
7. Morabito, J. W., Thin Solid Films. 19, 21 (1973).CrossRefGoogle Scholar
8. Thomas, G. and Goringe, M. J., Transmission Electron Microscopy of Materials (J. Wiley and Sons, New York, 1979).Google Scholar
9. Ziegler, J. F., et al., Nucl. Instrum. Methods. 149, 19 (1978).CrossRefGoogle Scholar
10. Williams, P., Evans, C. A., Grossbeck, M. L., and Birnbaum, H. K., Anal. Chem. 49, 1399 (1977).CrossRefGoogle Scholar
11. Paton, N. E. and Spurling, R. A., Metall. Trans. 7A, 1769 (1976).CrossRefGoogle Scholar
12. Ashwell, G. W. B. and Heckingbottom, R., J. Electrochem. Soc. 128, 649 (1981).CrossRefGoogle Scholar
13. Baker, J. E., Blattner, R. J., Nadel, S., Evans, C. A., and Nowick, R. S., Thin Solid Films. 69, 53 (1980).CrossRefGoogle Scholar
14. Tisone, T. C. and Drobek, J., J. Vac. Sci. Technol. 9, 271 (1371).Google Scholar
15. Holloway, P. H., Appl. Surf. Anal. ASTM STP 699, 5 (1980).CrossRefGoogle Scholar
16. Numakura, H. and Koiwa, M., Actu. Metall. 32, 1799 (1984).CrossRefGoogle Scholar
17. Kirchheim, R., Proc. Matls. Res. Soc., 252 (Boston, MA, 1984).Google Scholar
18. Reimer, J. D., J. Vac. Sci. Technol. A. 2, 242 (1984).CrossRefGoogle Scholar
19. Klema, J., Pyle, R. E., and Domangue, E., Proc. Inter. Rel. Phys. Sym., 1.1-1 (Las Vegas, NV, 1984).Google Scholar
20. Nelson, G., Guan, Y., Fitzgibbon, G., Curry, J., Muollo, R., and Thomas, A., Proc. Inter. Rel. Phys. Sym., 1.2–1 (Las Vegas, NV, 1984).Google Scholar
21. Poate, J. M., Turner, P. A., DeBonte, W. i., and Yahalom, J., J. of Appl. Phy. 46, 4275 (1975).CrossRefGoogle Scholar
22. Chang, C., Appl. Phys. Lett. 38, 860 (1981).CrossRefGoogle Scholar