Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:13:21.587Z Has data issue: false hasContentIssue false

Characterization of the Substrate Interface of Excimer Laser Crystallized Polycrystalline Silicon Thin Films

Published online by Cambridge University Press:  15 February 2011

G. B. Anderson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
D. K. Fork
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
R. I. Johnson
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
P. Mei
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
S. E. Ready
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304
Get access

Abstract

Excimer laser crystallized Si thin films on fused silica substrates exhibit a peak in the average grain size as a function of laser energy density. The average grain size increases with increasing laser fluence until a maximum value , approximately 10 microns for a 100 nm thick Si film, is achieved. The peak in grain size is accompanied by a peak in the electron Hall mobility. Further increases in the laser fluence result in a decrease in the Si grain size and an increase in the intragranular defects. A small energy range of 40 mJ/cm2 exists in which this peak in grain size can be achieved. Cross section TEM has shown that when the peak laser fluence is exceeded, the fused silica substrate can be as rough as 17 nm. Atomic force microscopy. performed on the substrate surface after the Si has been etched off, also shows that the magnitude and spatial frequency of the roughness increases when the critical laser fluence is exceeded. This degradation of the interface may also produce sites for stacking faults to form during the solidification of the Si. This result and results of simulations of the temperature of the interface during crystallization suggests that the peak energy range exists after the complete melting of the Si thin film and before the silica substrate starts to soften.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mei, P., Boyce, J.B.., Hack, M., Lujan, R., Ready, S.E., International Semiconductor D evice Symposium Proceedings, Vol. 1, 47, (1993).Google Scholar
2. Mei, P., Boyce, J.B.., Hack, M., Lujan, R., Johnson, R.I., Anderson, G.B., Fork, D.K., and Ready, S.E.. To be published in Appl. Phys. Lett., February 28, 1194.Google Scholar
3. Samashima, T. and Usui, S., Mat. Res. Soc. Symp. Proc. 71, 435 (1986).Google Scholar
4. Ready, S. E., Boyce, J. B., Bachrach, R. Z., Johnson, R. I., Winer, K., Anderson, G. B., and Tsai, C. C., Mat. Res. Soc. Proc. 149, 345 (1989)CrossRefGoogle Scholar
5. Winer, K., Bachrach, R. Z., Johnson, R. I., Ready, S. E., Anderson, G. B., and Boyce, J. B., Mat. Res. Soc. Proc. 164, 183 (1990).Google Scholar
6. Winer, K., Anderson, G. B., Ready, S. E., Bachrach, R. Z., Johnson, R. I., Ponce, F.A., and Boyce, J. B., Appl. Phys. Lett. 57, 2222 (1990).CrossRefGoogle Scholar
7. Bachrach, R. Z., Winer, K., Boyce, J. B., Ready, S. E., Johnson, R. I., and Anderson, G. B., J. Electron. Mat. 19, 241 (1990)CrossRefGoogle Scholar
8. Johnson, R. I., Anderson, G. B., Ready, S. E., Boyce, J. B., Mat. Res. Soc. Proc. 219, 407 (1991)Google Scholar
9. Kuriyama, H., et al., IEEE International Electron Meeting, Wash. D.C. (1991)Google Scholar
10. Johnson, R. I., Anderson, G. B., Ready, S. E., Fork, D. K., and Boyce, J. B., Mat.Res. Soc. Proc. 258, 123 (1992)Google Scholar
11. Samashima, T., Mat. Res. Soc. Proc, 283, 679 (1992).CrossRefGoogle Scholar
12. iwata, H., et al., Mat. Res. Soc. Proc, 283 709 (1992).Google Scholar
13. Kim, H. J., Im, J. S., and Thompson, M. O., Mat. Res. Soc. Proc, 321, 558 (1993).CrossRefGoogle Scholar
14. Boyce, J.B., Anderson, G.B., Fork, D.K., Johnson, R.I., Mei, P., and Ready, S.E., Mat. Res. Soc. Proc. 321, 671 (1993)Google Scholar
15. Kim, H. J., Im, J. S., Mat. Res. Soc. Proc, 321, 665 (1993)Google Scholar