Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T04:36:44.534Z Has data issue: false hasContentIssue false

Characterization of the interfacial layer formed during pulsed laser deposition of oxides on Si

Published online by Cambridge University Press:  21 March 2011

V. Craciun
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
J. M. Howard
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
N. D. Bassim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Medium-k dielectric Y2O3 films were directly grown on (100) Si substrates by the pulsed laser deposition (PLD) technique. X-ray photoelectron spectroscopy, variable angle spectroscopic ellipsometry, current-voltage, capacitance-voltage, and high-resolution transmission electron microscopy were used to investigate the composition, thickness, and electrical properties of the grown structures. It has been found that at the interface between the Si substrate and the grown dielectric layer, a SiOx interfacial layer, whose thickness depended on the oxygen pressure used during the PLD growth, was always formed. The main oxygen source for this interfacial layer formation is the physisorbed oxygen trapped inside the grown layer during the laser ablation-deposition process. When trying to reduce the thickness of this low-k interfacial layer by decreasing the oxygen pressure during laser ablation, a marked degradation of the electrical properties of the structures was noticed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feldman, L. C., Gusev, E. P., and Garfunkel, E. in Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, p.1, edited by Garfunkel, E. et al. (Kluwer, Dordrecht, 1998).Google Scholar
2. Cho, K. G., Kumar, D., Holloway, P. H., and Singh, R. K., Appl. Phys. Lett. 73, 3058 (1998).Google Scholar
3. Zhang, S. and Xiao, R., J. Appl. Phys. 83, 3842 (1998).Google Scholar
4. Hunter, M. E., Reed, M. J., N. El-Masry, A., Roberts, J. C., and Bedair, S. M., Appl. Phys. Lett. 76, 1935 (2000).Google Scholar
5. Araiza, J. J., Cardenas, M., Falcony, C., Mendez-Garcia, V. H., Lopez, M., and ContrerasPuente, G., J. Vac. Sci. Technol. A 16, 3305 (1998).Google Scholar
6. Craciun, V., Lambers, E. S., Bassim, N. D., Singh, R.K., and Craciun, D., J. Mater. Res. 15 (2000) 488.Google Scholar
7. Choi, S. C., Cho, M. H., Whangbo, S. W., Whang, C. N., Kang, S. B., Lee, S. I., and Lee, M. Y., Appl. Phys. Lett. 71, 903 (1997).Google Scholar
8. Kang, S-K., Ko, D-H., Kim, E-H., Cho, M. H., Whang, C. N., Thin Solid Films 353, 8 (1999).Google Scholar
9. Ono, H. and Koyanagi, K., Appl. Phys. Lett. 75, 3521 (1999).Google Scholar
10. Norton, D. P., Budai, J. D., and Chisholm, M. F., Appl. Phys. Lett. 76, 1677 (2000).Google Scholar
11. Kim, J. S., Morita, H., Joo, J. D., and Ohmi, T., J. Electrochem. Soc. 144, 3275 (1997).Google Scholar
12. Craciun, V., Boyd, I. W., J. Mater. Res. 14, 3525 (1999)Google Scholar
13. Mitchell, D. F., Clark, K. B., Bardwell, J. A., Lennard, W. N., Massoumi, G. R., and Mitchell, I. V., Surf. Interf. Analysis 21, 44 (1994).Google Scholar
14.Perkin-Elmer Physical Electronics Technical Bulletin 8503, Perkin-Elmer, Eden Prairie, MN.Google Scholar
15. Herzinger, C. M., Johs, B., McGahan, W. A., and Paulson, W., Thin Solid Films 313–314, 281 (1998).Google Scholar
16. Ingo, G. M. and Marletta, G., Nucl. Instr. Meth. B 116, 440 (1996).Google Scholar
17. Duraud, J. P., Jollet, F., Thromat, N., Gautier, M., Maire, P., C. le Gressus, and Dartyge, E., J. Am. Ceram. Soc. 73, 2467 (1990).Google Scholar
18. Vink, T. J., Verbeek, R. G. F. A., Snijders, J. H. M., Tamminga, Y., J. Appl. Phys. 87, 7252 (2000)Google Scholar
19. Mergel, D., Stass, W., Ehl, G., Barthel, D., J. Appl. Phys. 88, 2437 (2000)Google Scholar