Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:50:18.954Z Has data issue: false hasContentIssue false

Characterization of the Corrosion Kinetic of X52 Steel in Seawater with Biocides

Published online by Cambridge University Press:  01 February 2011

R. Galvan-Martinez
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Av. S.S. Juan Pablo II. S/N, Zona Universitaria., Frac. Costa Verde. C.P. 94294, Veracruz.México. Email: [email protected]
R. Orozco-Cruz
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Av. S.S. Juan Pablo II. S/N, Zona Universitaria., Frac. Costa Verde. C.P. 94294, Veracruz.México. Email: [email protected]
R. Torres-Sánchez
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Metalúrgicas, Edif. “U”, C.U. Apartado Postal 52-B, C.P. 58000, Morelia, Mich., México.
E. A. Martínez-Martinez
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana, Av. S.S. Juan Pablo II. S/N, Zona Universitaria., Frac. Costa Verde. C.P. 94294, Veracruz.México. Email: [email protected]
Get access

Abstract

Corrosion study of the API X52 pipeline steel immersed in seawater without biocide and with 0.25, 0.5 and 0.75 ppm of biocide, under static and dynamic (turbulent flow) conditions was carried out at room temperature and atmospheric pressure. The hydrodynamic conditions were controlled by a rotating cylinder electrode (RCE) and the rotation speed was 1000 RPM. I order to analyse the corrosion process, linear polarization resistance (LPR), and polarization curves (PC) were made. This work investigation shown that the corrosion rate is higher under turbulent flow conditions than static conditions. A localized corrosion attacks was found in the superficial analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silverman, D.C., Corrosion, 44, 42 (1988).Google Scholar
2. Poulson, B., Corros. Sci., 23, 391 (1983).Google Scholar
3. Dean, S.W., Mater. Perform., 28, 61 (1990).Google Scholar
4. Papavinasam, S., Revie, R.W., Attard, M., Demoz, A., Michaelian, K., Corrosion, 59, 897 (2003).Google Scholar
5. Poulson, B., Corros. Sci., 35, 655 (1993).Google Scholar
6. Poulson, B., J. Appl. Electrochem., 24, 1 (1994).Google Scholar
7. Kear, G., Barker, B.D., Stokes, K.R., Walsh, F.C., Corros. Sci., 47, 1694 (2005).Google Scholar
8. Mora-Mendoza, J.L., Turgoose, S., Corros. Sci., 44, 1223 (2002).Google Scholar
9. Nesic, S., Solvi, G.T., Enerhaug, J., Corrosion, 51, 773 (1995).Google Scholar
10. Nesic, S., Bienkowski, J., Bremhorst, K., Yang, K.-S., Corrosion, 56, 1005 (2000).Google Scholar
11. Kear, G., Bremhorst, K., Coles, S., Huáng, S.-H., Corros. Sci., 50, 1789 (2008).Google Scholar
12. Gabe, D.R., J. Appl. Electrochem., 4, 91 (1974).Google Scholar
13. Gabe, D.R., Walsh, F.C., J. Appl. Electrochem., 13, 3 (1983).Google Scholar
14. Fontana, M.G., Corrosion Engineering, 2nd Ed. Editorial MacGraw-Hill, Singapore (1987), p. 445473, 502–503Google Scholar
15. Roberge, P.R., Handbook of Corrosion Engineering, (Editorial McGraw-Hill, Printed in U.S.A., 2000) p. 1316, 923–927.Google Scholar
16. Popova, A., Christov, M., Vasilev, A., Corrosion Science, 49, 3276 (2007).Google Scholar