Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:15:11.807Z Has data issue: false hasContentIssue false

Characterization of the Complex Matrix of the Mytilus Edulis Shell and the Implications for Biomimetic Ceramics

Published online by Cambridge University Press:  21 February 2011

J. A. Keith
Affiliation:
Biotechnology Division, US Army Natick RD&E Center, Natick, MA 01760-5020, USA
S. A. Stockwell
Affiliation:
Biotechnology Division, US Army Natick RD&E Center, Natick, MA 01760-5020, USA
D. H. Ball
Affiliation:
Biotechnology Division, US Army Natick RD&E Center, Natick, MA 01760-5020, USA
W. S. Muller
Affiliation:
Biotechnology Division, US Army Natick RD&E Center, Natick, MA 01760-5020, USA
D. L. Kaplan
Affiliation:
Biotechnology Division, US Army Natick RD&E Center, Natick, MA 01760-5020, USA
T. W. Thannhauser
Affiliation:
Analytical and Synthesis Facility, Cornell University Biotechnolgy Core Facility, Ithaca, NY
R. W. Sherwood
Affiliation:
Analytical and Synthesis Facility, Cornell University Biotechnolgy Core Facility, Ithaca, NY
Get access

Abstract

The macromolecular matrix present in the composite shell of the blue mussel, Mytilus edulis, accounts for less than 1% of the shell by weight but is theorized to play a significant role in controlling the growth, morphology, and orientation of the CaCO3 that makes up the shell. The presence of several proteins in this matrix, only some of which have affinity for calcium, suggests a hierarchical structural model for the shell. Proteins were isolated under denaturing, reducing conditions and separated by centrifugation, gel electrophoresis, and high performance liquid chromatography. The major matrix proteins, both soluble and insoluble, were evaluated for amino acid composition, calcium binding, and glycosylation. Some N-terminal sequence data was collected. Non-proteinaceous components of the matrix were also analyzed. Comparison of the mussel shell matrix with the protein matrix of other molluscan systems suggests that this complexity is not unique to the mussel and may provide a key to the understanding of more generic biomineralization processes necessary for such applications as biomimetic ceramics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hare, P.E. and Abelson, P.H., Carnegie Institution Yearbook,.64, 223 (1965).Google Scholar
2. Wilbur, K., in Physiology of Mollusca, Vol I, edited by Wilbur, K.M. and Yonge, C.M., (Academic Press, New York, NY 1964), p. 243.Google Scholar
3. Krampitz, G., Engels, J., and Cazaux, C., in The Mechanisms of Mineralization in Invertebrates and Plants, edited by Watabe, N., and Wilbur, K.M., (University of South Carolina Press 1976), p. 155.Google Scholar
4. Lowenstam, H.A. and Weiner, S., On Biomineralization, (Oxford University Press, New York, NY, 1989).Google Scholar
5. Wheeler, A.P. and Sikes, C.S., in Biomineralization Chemical and Biochemical Perspectives, edited by Mann, S., Webb, J., and Williams, R.P., (VCH Publishers, New York, NY 1989) p. 95.Google Scholar
6. Weiner, S., Traub, W., and Lowenstam, H.A., in Biomineralization and Biological Metal Accumulation, edited by Westbroek, P. and deJong, E.W., (D. Reidel Publishing Co., Dordrecht, Holland, 1983) p. 205.Google Scholar
7. Gordon, J. and Carriker, M.R., Mar. Biol., 57, 251, (1980).Google Scholar
8. Sikes, C.S. and Wheeler, A.P., in Biomineralization and Biological Metal Accumulation, edited by Westbroek, P. and DeJong, E.W., (D. Reidel, Dordrecht, Holland 1983), p. 285.CrossRefGoogle Scholar
9. Swift, D.M., Sikes, C.S., and Wheeler, A.P., J. Exp. Zool., 240, 65 (1986).CrossRefGoogle Scholar
10. Veis, D.J., Albinder, T.M., Clohisy, J., Rahima, M., Sabsay, B., and Veis, A., J. Exp. Zool., 240, 35 (1986).Google Scholar
11. Jeuniaux, C., Chitine et Chitinolyse, (Masson, Paris, France 1963)Google Scholar
12. Peters, W., Comp. Biochem. Biophysiol, 41B, 541 (1972).Google Scholar
13. Simkiss, K., Comp. Biochem. Physiol., 16 427 (1965).Google Scholar
14. Crenshaw, M.A., and Ristedt, H., in The Mechanisms of Mineralization in the Invertebrates an Plants, edited by Watabe, N. and Wilbur, K.M., (University of South Carolina Press, 1976), p. 355.Google Scholar
15. Crenshaw, M.A., Biomineralization, 6, 6 (1972).Google Scholar
16. Beedham, G.E., Quart. J. Microsc. Sci., 99, 341, (1958).Google Scholar
17. Meenakshi, V.R., Hare, P.E., and Wilbur, K.M., Comp. Biochem. Physiol., 40B, 1037 (1971).Google Scholar
18. Weiner, S. and Hood, L., Science, 190, 987 (1975).Google Scholar
19. Krampitz, G., Drolshagen, H., and Hotta, S., Experientia, 39, 1104 (1983).CrossRefGoogle Scholar
20. Weiner, S. and Traub, W., in Structural Aspects of Recognition and Assembly in Biological Macromolecules, edited by Balaban, M.,Sussman, J.L., Traub, W., and Yonath, A., (Balaban ISS 1981), p. 467.Google Scholar
21. Weiner, S., in The Chemistry and Biology of Mineralized Connective Tissues, edited by Veis, A., (Elsevier North Holland, Inc. 1981), p. 517.Google Scholar
22. Sikes, C.S. and Wheeler, A.P., Chemtech, Oct., 620 (1988).Google Scholar
23. Gregoire, C., J. Biophys. Biochem. Cytol.,9, 395, (1961); in Chemical Zoology, Vol 7, edited by M. Florkin and B.T. Scheer, (Academic Press, New York, 1972), p. 45.Google Scholar
24. Kennedy, W.J., Taylor, J.D., and Hall, A., Biol. Rev., 44, 499 (1969).Google Scholar
25. Carriker, M.R., Mar. Biol., 48, 105, (1978).Google Scholar
26. Butler, W.T., in Methods in Enzymology, Vol 145, edited by Cunningham, L.W., (Academic Press, New York, 1987), p. 290.Google Scholar
27. Peterson, G.L., Anal. Biochem.,.83, 346 (1977).Google Scholar
28. LeGendre, N. and Matsudaira, P., Biotechniques, 6(2), 154 (1988).Google Scholar
29. Cohen, S.A., Meys, M.,and Tarvin, T.L., , T.L., The Pico-Tag™ method. A manual of advanced techniques for amino acid analysis, (Waters Division of Millipore, Milford, MA USA, 1989).Google Scholar
30. Chaplin, M.F., Anal. Biochem, 123, 336, (1982).CrossRefGoogle Scholar
31. Maruyama, K., Mikawa, T., and Ebashi, S., J. Biochem, 95, 511 (1984).Google Scholar
32. Lombardi, S. and Kaplan, D., J. Arachnol., 18, 297 (1990).Google Scholar
33. Weiner, S. and Traub, W., FEBS Letters, 111 (2), 311 (1980).Google Scholar
34. Agricultural Research Service, Composition of Foods. Handbook 8, (USDA, Washington, DC, USA, 1963).Google Scholar
35. Benson, S.C., Benson, N.C., and Wilt, F., J. Cell Biol., 102, 1878, (1986).Google Scholar
36. Addadi, L. and Weiner, S., Proc. Natl. Acad. Sci. USA, 82, 4110 (1985); Mol. Cryst. Liq. Crystal, 13, 305 (1986).CrossRefGoogle Scholar
37. Berman, A., Addadi, L., and Weiner, S., Nature, 331, 546 (1988).Google Scholar
38. Weiner, S., J. Chrom., 245, 148 (1982).Google Scholar
39. Butler, W.T., Bhown, M., Dimuzio, M.T., and Linde, A., Coll. Res., 1, 187, (1981).Google Scholar
40. Weiner, S., Lowenstam, H.A., and Hood, L., J. Exp. Mar. Biol. Ecol., 30, 45 (1977).Google Scholar
41. Sucov, H.M., Benson, S., Robinson, J.J., Britten, R.J., Wilt, F., and Davidson, E.H., Dev. Biol., 120, 507 (1987).Google Scholar
42. Weiner, S., Calcif. Tissue Int., 29, 163 (1979).Google Scholar
43. Wheeler, A.P., Rusenko, K.W., George, J.W., and Sikes, C.S., Com. Biochem. Physiol., 87B (4), 953 (1987).Google Scholar
44. Linde, A., Lussi, A., and Crenshaw, M.A., Calcif. Tissue Int., 44, 286 (1989).Google Scholar
45. Weiner, S. and Traub, W., Phil. Trans. R. Soc. London Ser. B, 304, 421 (1984).Google Scholar