Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:57:05.005Z Has data issue: false hasContentIssue false

Characterization of Surface Defect Structure by Low Energy Electron Diffraction*

Published online by Cambridge University Press:  25 February 2011

J. F. Wendelken
Affiliation:
Oak Ridge National Laboratry, Oak Ridge, TN 37831
G. -C. Wang
Affiliation:
Oak Ridge National Laboratry, Oak Ridge, TN 37831
J. M. Pimbley
Affiliation:
Center for Nntegrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12181 Also, General Electric Company, Schnectady, NY 12345.
T. -M. Lu
Affiliation:
Center for Nntegrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12181
Get access

Abstract

Low energy electron diffraction is a surface sensitive tool which is most widely used for the determination of surface symmetries and equilibrium atomic positions. Experimental and theoretical advances made in the past five years make it possible now to use LEED also for the characterization of a wide variety of surface defect structures. In this paper a variety of experimental results involving analysis of diffracted electron beam shapes as a function of primary electron beam energy, adsorbate coverage, crystal tem-perature and ordering time are presented. These experimental results coupled with kinematic theory, allow the determination of step density, size and shape of reconstruction domains and overlayer islands, island size distribution in an overlayer during growth, and the mode of growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

**

Permanent address: Physics Department, Rensselaer Polytechnic Institute, Troy, NY 12181.

*

Research sponsored by the Division of Materials Sciences, U.S. Department of Energy under contract DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.

References

1. Henzler, M. in Electron Spectroscopy for Surface Analysis, ed. by Ibach, H. (Springer, Berlin, 1977); M. G. Lagally in Chemistry and Physics of Solid Surfaces IV, ed. by R. Vanselow and R. Hove, Springer Series in Chemical Physics, Vol. 20 (Springer, Heidelberg, 1982).Google Scholar
2. Wendelken, J. F. and Propst, F. M., Rev. Sci. Instrum. 47, 1069 (1976).10.1063/1.1134820Google Scholar
3. Park, R. L., Houston, J. E., and Schreiner, D. G., Rev. Sci. Instrum. 42, 60 (1971).10.1063/1.1684878CrossRefGoogle Scholar
4. Lu, T.-M. and Lagally, M. G., Surf. Sci. 99, 695 (1980).10.1016/0039-6028(80)90563-4CrossRefGoogle Scholar
5. Wendelken, J. F. and Wang, G.-C., J. Vac. Sci. Technol. A 2, 888 (1984).10.1116/1.572539Google Scholar
6. Henzler, M., Appl. Surf. Sci. 11/12, 450 (1982); J. A. Martin and M. G. Lagally, J. Vac. Sci. Technol. Al, 1210 (1983); E. D. Williams, R. Q. Hwang, and R. L. Park, J. Vac. Sci. Technol. A2, 1004 (1984).10.1016/0378-5963(82)90092-7Google Scholar
7. Chang, C. C. and Germer, L. H., Surf. Sci. 8, 115 (1967).10.1016/0039-6028(67)90077-5Google Scholar
8. Tracy, J. C. and Blakely, J. M., Surf. Sci. 15, 257 (1969).10.1016/0039-6028(69)90150-2Google Scholar
9. Hopkins, B. J. and Watts, G. D., Surf. Sci. 44, 237 (1974).10.1016/0039-6028(74)90104-6Google Scholar
10. Wang, G.-C. and Lu, T.-M., Phys. Rev. B 28, 6795 (1983).10.1103/PhysRevB.28.6795Google Scholar
11. Ertl, G. and Plancher, M., Surf. Sci. 48 364 (1975).10.1016/0039-6028(75)90412-4Google Scholar
12. Lu, T.-M., Wang, G.-C., and Lagally, M. G., Surf. Sci. 108, 494 (1981).10.1016/0039-6028(81)90541-0Google Scholar
13. Woodruff, P. D., Wang, G.-C., and Lu, T.-M., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. by King, D. A. and Woodruff, P. D., (Elsevier, Amsterdam, 1983), Vol.2, p. 259.Google Scholar
14. Tracy, J. C. and Blakely, J. M., in The Structure and Chemistry of Solid Surfaces, ed. by Somorjai, G. A. (Wiley, New York, 1969), paper 65; C. S. McKee, D. L. Perry, and M. W. Roberts, Surf. Sci. 39, 176 (1973).Google Scholar
15. Williams, E. D. and Weinberg, W. H., Surf. Sci. 109, 574 (1981).10.1016/0039-6028(81)90428-3Google Scholar
16. Lu, T.-M., Zhao, L.-H., Lagally, M. G., Wang, G.-C., and Houston, J. E., Surf. Sci. 122, 519 (1982).10.1016/0039-6028(82)90100-5Google Scholar
17. Wang, G.-C. and Lu, T.-M., Phys. Rev. Lett. 50, 2014 (1983).Google Scholar
18. Lifschitz, I. M., Zh. Eksp. Teor. Fiz. 42 1354 (1962) [Sov. Phys. JETP 15, 939 (1962)].Google Scholar
19. Allen, S. M. and Cahn, J. W., Acta Metall. 27, 1085 (1979).10.1016/0001-6160(79)90196-2Google Scholar
20. Pimbley, J. M., Lu, T.-M., and Wang, G.-C., to be published.Google Scholar
21. Houston, J. E. and Park, R. L., Surf. Sci. 26, 209 (1970); J. E. Houston and R. L. Park, Surf. Sci. 26, 169 (1971).10.1016/0039-6028(70)90228-1Google Scholar
22. Wendelken, J. F. and Wang, G.-C., Surf. Sci. 140, 425 (1984).10.1016/0039-6028(84)90743-XGoogle Scholar
23. Wendelken, J. F. and Wang, G.-C., to be published.Google Scholar
24. Wendelken, J. F. and Wang, G.-C., J. Vac. Sci. Technol., to be published (1985).Google Scholar
25. Wang, G.-C. and Lu, T.-M., Surf. Sci. 122, L635 (1982).10.1016/0039-6028(82)90073-5Google Scholar
26. Debe, M. K. and King, D. A., Phys. Rev. Lett. 39, 708 (1977).10.1103/PhysRevLett.39.708CrossRefGoogle Scholar
27. Lu, T.-M. and Wang, G.-C., Surf. Sci. 107, 139 (1981); T.-M. Lu, L.-H. Zhao, M. G. Lagally, G.-C. Wang, and J. E. Houston, Surf. Sci. 122, 519 (1982).10.1016/0039-6028(81)90617-8Google Scholar