Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:55:37.989Z Has data issue: false hasContentIssue false

Characterization of Solids in Residual Wastes from Underground Storage Tanks at the Hanford Site, Washington, U.S.A.

Published online by Cambridge University Press:  19 October 2011

Kenneth Michael Krupka
Affiliation:
[email protected], Pacific Northwest National Laboratory, Environmental Technology, Battelle Boulevard, P.O. Box 999, Mail Stop K6-81, Richland, WA, 99352, United States, 509-376-4412, 509-376-5368
William J. Deutsch
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
H. Todd Schaef
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Bruce W. Arey
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Steve M. Heald
Affiliation:
[email protected], Argonne National Laboratory, Argonne, IL, 60439, United States
Michael J. Lindberg
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Kirk J. Cantrell
Affiliation:
[email protected], Pacific Northwest National Laboratory, Richland, WA, 99352, United States
Get access

Abstract

Solid phase physical and chemical characterization methods have been used in an ongoing study of residual wastes from several single-shell underground waste tanks at the U.S. Department of Energy's Hanford Site in southeastern Washington State. Because these wastes are highly-radioactive dispersible powders and are chemically-complex assemblages of crystalline and amorphous solids that contain contaminants as discrete phases and/or co-precipitated within oxide phases, their detailed characterization offers an extraordinary technical challenge. X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDS) are the two principal methods used, along with a limited series of analyses by synchrotron-based methods, to characterize solid phases and their contaminant associations in these wastes. Depending on the specific tank, numerous solids (e.g., èejkaite; Na2U2O7; clarkeite; gibbsite; böhmite; dawsonite; cancrinite; Fe oxides such as hematite, goethite, and maghemite; rhodochrosite; lindbergite; whewellite; nitratine; and several amorphous phases) have been identified in residual wastes studied to date. Because many contaminants of concern are heavy elements, SEM analysis using the backscattered electron (BSE) signal has proved invaluable in distinguishing phases containing elements, such as U and Hg, within the complex assemblage of particles that make up each waste. XRD, SEM/EDS, and synchrotron-based methods provide different, but complimentary characterization data about the morphologies, crystallinity, particle sizes, surface coatings, and compositions of phases in these wastes. The impact of these techniques is magnified when each is used in an iterative fashion to help interpret the results from the other analysis methods and identify additional, more focused analyses.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rapko, B. M. and Lumetta, G. J., Status Report on Phase Identification in Hanford Tank Sludges, PNNL-13394 (Pacific Northwest National Laboratory, Richland, WA, 2000).Google Scholar
2. Deutsch, W. J., Krupka, K. M., Cantrell, K. J., Brown, C. F., Lindberg, M. J., Schaef, H. T., Heald, S. M., Arey, B. W., and Kukkadapu, R. K., Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste, PNNL-15372 (Pacific Northwest National Laboratory, Richland, WA, 2005).Google Scholar
3. Lindberg, M. J. and Deutsch, W. J., Tank 241-AY-102 Data Report, PNNL-14344 (Pacific Northwest National Laboratory, Richland, WA, 2003).Google Scholar
4. Krupka, K. M., Deutsch, W. J., Lindberg, M. J., Cantrell, K. J., Hess, N. J., Schaef, H. T., and Arey, B. W., Hanford Tanks 241-AY-102 and 241-BX-101: Sludge Composition and Contaminant Release Data, PNNL-14614 (Pacific Northwest National Laboratory, Richland, WA, 2004).Google Scholar
5. Deutsch, W. J., W. J., Krupka, K. M., Lindberg, M. J., Cantrell, K. J., Brown, C. F., and Schaef, H. T., Hanford Tanks 241-C-203 and 241-C-204: Residual Waste Contaminant Release Model and Supporting Data, PNNL-14903 (Pacific Northwest National Laboratory, Richland, WA, 2004).Google Scholar
6. Deutsch, W. J., Krupka, K. M., Lindberg, M. J., Cantrell, K. J., Brown, C. F., and Schaef, H. T., Hanford Tank 241-C-106: Residual Waste Contaminant Release Model and Supporting Data, PNNL-15187 (Pacific Northwest National Laboratory, Richland, WA, 2005).Google Scholar
7. Krupka, K. M., Schaef, K. M., H. T., Arey, B. W., Heald, S. M., Deutsch, W. J., Lindberg, M. J., and Cantrell, K. J., Environ. Science & Tech. 40, 37493754 (2006).Google Scholar
8. Cantrell, K. J., Krupka, K. M., Deutsch, W. J., and Lindberg, M. J., Environ. Science & Tech. 40, 37553761 (2006).Google Scholar
9. Deutsch, W. J., Krupka, K. M., Lindberg, M. J., Cantrell, K. J., Brown, C. F., and Schaef, H. T., Hanford Tank 241-C-106: Impact of Cement Reactions on Release of Contaminants from Residual Waste, PNNL-15544 (Pacific Northwest National Laboratory, Richland, WA, 2006).Google Scholar
10. Strachan, D. M., Schaef, H. T., Schweiger, M. J., Simmons, K. L., Woodcock, L. J., and Krouse, M. K., Powder Diff 18, 2328 (2003).Google Scholar
11. Heald, S. M., Stern, E. A., Brewe, D., Gordon, R. A., Crozier, E. D., Jiang, D., and Cross, J. O., J. Synchrotron Rad 8, 342344 (2001).Google Scholar
12. Bechtold, D. B., Cooke, G. A., Herting, D. L., Person, J. C., Viswanath, R. S., and Warrant, R. W., Laboratory Testing of Oxalic Acid Dissolution of Tank 241-C-106 Sludge, RPP-17158, Rev. 0 (Fluor Hanford, Inc. Richland, WA, 2003).Google Scholar
13. Ondruš, P., Skála, R., Veselovský, F., Sejkora, J., and Vitti, C., Amer. Mineral 88, 686693 (2003).Google Scholar
14. Burakov, B. E., Strykanova, E. E., and Anderson, E. B. in Secondary Uranium Minerals on the Surface of Chernobyl ‘Lava’, edited by Gray, W. J. and Triay, I. R., (Mater. Res. Soc. Proc. 465, Pittsburgh, PA, 1997) pp. 13091311.Google Scholar