Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:39:09.431Z Has data issue: false hasContentIssue false

Characterization of SiO2/SiC Samples Using Photoelectron Spectroscopy

Published online by Cambridge University Press:  10 February 2011

L. I. Johansson
Affiliation:
Department of Physics, Linköping University, S-58183 Linköping
P- A. Glans
Affiliation:
Department of Physics, Linköping University, S-58183 Linköping
Q. Wahab
Affiliation:
Department of Physics, Linköping University, S-58183 Linköping
T. M. Grehk
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen- Synchrotron DESY, D-22603 Hamburg
T. H. Eickhoff
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen- Synchrotron DESY, D-22603 Hamburg
W. Drube
Affiliation:
Hamburger Synchrotronstrahlungslabor HASYLAB am Deutschen Elektronen- Synchrotron DESY, D-22603 Hamburg
Get access

Abstract

The results of photoemission studies of SiO2/SiC samples for the purpose of revealing presence of any carbon containing by-products at the interface are reported. Two components could be identified in recorded Si 2p and C ls core level spectra. For Si 2p these were identified to originate from SiO2 and SiC while for C ls they were interpreted to originate from graphite like carbon and SiC. The variation in relative intensity of these components with emission angle was first investigated. Thereafter the intensity of the different components were studied after successive Ar+-sputtering cycles. Both experiments showed contribution from graphite like carbon on top of the oxide but not at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wahab, Q., Hultman, L., Willander, M. and Sundgren, J.E.. J. Electron. Mater. 24, 1345 (1995).10.1007/BF02655446Google Scholar
2 Wahab, Q., Turan, R., Hultman, L., Willander, M. and Sundgren, J.-E.. Thin Solid Films 287, 252(1996).10.1016/S0040-6090(96)08788-3Google Scholar
3 Hornetz, B, Michel, H.-J. and Halbritter, J., J Mater. Res. 9, 3088(1994).10.1557/JMR.1994.3088Google Scholar
4 Drube, W., Schulte-Schrepping, H., Schmidt, H.-G., Treusch, R. and Materlik, G., Rev. Sci. Instrum. 66, 1668(1995).10.1063/1.1145877Google Scholar
5 Drube, W., Grehk, T. M., Treusch, R. and Materlik, G., J. Electron Spect. Rel Phenom. 88–89, 683 (1998).10.1016/S0368-2048(97)00257-0Google Scholar
6 Andersen, J.N., Björnholm, O., Sandell, A., Nyholm, R., Forsell, J., Thånell, L., Nilsson, A. and Mårtensson, N., Synchrotron Radiation News 4, 15(1991).10.1080/08940889108602624Google Scholar
7 Johansson, L. I., Owman, Fredrik and rtensson, Per M. Phys. Rev. B 53, 13793(1996).10.1103/PhysRevB.53.13793Google Scholar
8 Sette, F., Wertheim, G.K., Ma, Y., Meigs, G., Modesti, S. and Chen, C.T., Phys. Rev. B 41, 9766(1990).10.1103/PhysRevB.41.9766Google Scholar
9 Mahowald, P.H., Friedman, D.J., Carey, G.P., Bertness, K.A. and Yeah, J.J., J. Vac. Sci. Technol. A 5, 2982(1987).10.1116/1.574244Google Scholar
10 Johansson, L. I., Glans, P.-A., Wahab, Q. Grehk, T.M, Eickhoff, Th. and Drube, W., to be published.Google Scholar
11 Cumpson, P.J. and Seah, M.P., Surf. and Interf. Analysis 25, 430(1997).10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-73.0.CO;2-7>Google Scholar