Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T22:58:37.390Z Has data issue: false hasContentIssue false

Characterization of Pulsed-Laser Deposited Amorphous Diamond Films by Spectroscopic Ellipsometry

Published online by Cambridge University Press:  15 February 2011

G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, [email protected]
D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, [email protected]
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, [email protected]
A. A. Puretzky
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, [email protected]
V. I. Merkulov
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6030, [email protected]
Get access

Abstract

Spectroscopic ellipsometry is used to characterize amorphous diamond, also known as tetrahedral amorphous carbon, (ta-C) films grown by pulsed laser ablation. The ellipsometry data is collected with the two-modulator generalized ellipsometer, which measures all three parameters required to characterize isotropic samples, as well as additional parameters used to characterize strain-induced birefringence of the focusing optics. Lenses are used to focus the light spot to an ellipse 0.7 × 2.0 mm2, allowing us to perform several ellipsometric measurements across the profile of ta-C films grown on 7.5 cm diameter Si wafers. The spectroscopic ellipsometry data are fit using a model of the ta-C dielectric function based on the Tauc band edge and the Lorentz expression of the dielectric function for an ensemble of atoms. These fits are used to determine the thicknesses of the rough surface layer, the ta-C film, and the interface layer, as well as the energy gap of the film. Comparisons are made with fits to an earlier formulation due to Forouhi and Bloomer [Phys. Rev. B 34, 7018 (1986).]. In addition to being Kramers-Kronig consistent, the Tauc-Lorentz formulation fits the ta-C data better.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alterovitz, S. A., Savvides, N., Smith, F. W., and Woollam, J. A., in Handbook of Optical Constants II, Ed. Palik, E. A., (Academic Press, New York, 1991), p. 837852.Google Scholar
2. McGahan, W. A. and Woollam, J. A. in Novel Forms of Carbon II, edited by Renschler, C. L., Cox, D. M., Pouch, J. J., and Achiba, Y. (Mater. Res. Soc. Proc. 349, Pittsburgh, PA, 1994) pp. 453464.Google Scholar
3. McGahan, W. A., Makovicka, T., Hale, J., and Woollam, J. A., Thin Solid Films 253, 5761 (1994).Google Scholar
4. Fujiwara, H., Koh, J., Wronski, C. R., and Collins, R. W., Appl. Phys. Lett. 70, 21502152 (1997).Google Scholar
5. Jellison, G. E. Jr. Thin Solid Films 234, 416422 (1993); 290, 40-45 (1996).Google Scholar
6. Jellison, G. E. Jr. and Modine, F. A., Appl. Opt. 36, 81848189 (1997); 36, 8190-8198 (1997).Google Scholar
7. Jellison, G. E. Jr. and Modine, F. A., Appl. Phys. Lett. 69, 371373 (1996); 69, 2137 (1996).Google Scholar
8. Forouhi, A. R. and Bloomer, I., Phys. Rev. B 34, 7018 (1986).Google Scholar
9. Lowndes, D. H., Merkulov, V. I., Puretzky, A. A., Geohegan, D. B., Jellison, G. E. Jr., and Thundat, T. G. this proceedings.Google Scholar
10. Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1935); Ph. J. Roussel, J. Vanhellemont, and H. E. Maes, Thin Solid Films 234, 423 (1993).Google Scholar
11. Jellison, G. E. Jr. Optical Materials 1, 4147 (1991).Google Scholar
12. Jellison, G. E. Jr., Modine, F. A., Doshi, P., and Rohatgi, A., Thin Solid Films (in press 1998).Google Scholar