No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
A detailed characterization was performed of the particles produced under various Pb:Si molar feed ratios in a flow reactor at a maximum temperature of 1000 °C. The silica particles formed in the high temperature region coagulated and only partially coalesced to form large agglomerate structures of high specific surface area. For a lead only feed, the resulting particles were hydrocerussite with small but detectable amounts of massicot. As the silica precursor was inlet in excess amounts (Pb:Si ≤ 1:12), the crystalline lead compounds disappeared and amorphous lead-silica complexes predominated. The particle morphology also changed from cylindrical, polygonal and spherical shapes to large agglomerate structures composed of several size modes of primary particles. At Pb:Si molar feed ratios of 1:12 and 1:29, the particles making up the chain-like agglomerate structure were primarily spherical with larger lead silicate spherical particles (≈ 0.5 μm) attached to the agglomerate. The lead was found to be distributed throughout the large agglomerate structures.