Article contents
Characterization of KNbO3 Thin Films Deposited by Ion Beam Sputtering using a Computer-Controlled Rotating Target Holder
Published online by Cambridge University Press: 21 February 2011
Abstract
KNbO3 is a strong candidate as a material for use as channel waveguides due to a high electrooptic figure of merit. High quality single crystals are difficult to obtain due to incongruent melting of the compound. Control of cation concentration and oxygen incorporation are problems encountered in current thin film processing routes.
In order to overcome the problems discussed above, an ion beam deposition system featuring a computer-controlled rotatable target holder and quartz crystal resonator (QCR) feedback loop has been developed. Multicomponent films are produced via sputtering from elemental or compound targets sequentially exposed to an ion beam. Initial results are presented on the use of this new technique for the deposition of KNbO3. Pressed KNbO3, Nb2O5, and KO2 powders were used as sputtering targets. By varying the programmed thickness of deposited film from each target being sputtered, the ratio of K:Nb could be reproducibly controlled. The variation in sticking coefficients due to substrate temperature was also compensated for in this manner.
Thin films were analyzed by X-ray diffraction and TEM to determine phases present and film microstructure. Film morphology and composition has been studied as a function of substrate temperature, layer thickness, and ion beam process parameters. The relation between deposition parameters and film characteristics are discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1989
References
REFERENCES
- 5
- Cited by