Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:01:36.812Z Has data issue: false hasContentIssue false

Characterization of Electronic Materials by Optical Reflectance Spectroscopy and Digital Signal Processing

Published online by Cambridge University Press:  22 February 2011

Pieter L. Swart*
Affiliation:
Sensors Sources and Signal Processing Research Group, Faculty of Engineering, Rand Afrikaans University, PO Box 524, Auckland Park 2006, South Africa
Get access

Abstract

Ion implantation, diffusion, epitaxy, oxidation and ion exchange are common processing steps which alter the refractive index of dielectric media. These changes can be probed non-destructively by optical methods such as infrared and ultraviolet-visible spectroscopy, and related to material structure. An overview is given of the bilinear transform of reflectance and its use in conjunction with Fourier spectral analysis for thickness and refractive index estimation. Closed-form solutions are presently available for the bilinear transformed reflectance of heteroepitaxial multilayer structures, and for materials containing graded refractive index profiles. Salient features such as positions of interfaces and refractive index steps in multilayer media; depth and width of buried inhomogeneous layers; and width of a transition region between layers of constant refractive index can be determined directly. Under certain restrictive assumptions the bilinear transformed reflectance is shown to be invertible, which allows one to determine the complete refractive index profile. Examples are presented which illustrate the determination of thickness and refractive index of individual layers in multilayered structures. Specific examples include silicon-on-insulator, and Il-V heteroepitaxial structures such as InP/InGaAs/lnP. Analysis of the reflectance of medium to high energy implanted Si or GaAs allows determination of mean damage depth and standard deviation. The invertibility of the bilinear transformed reflectance is illustrated by estimating the refractive index profile of nitrogen implanted silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gaskill, D.K., Davis, J., Sillmon, R.S. and Sydor, M. in SPIE Proc. Modern Optical Characterization Techniques for Semiconductors and Semiconducting Devices edited by Glembocki, O., Pollak, F. and Song, J. (SPIE Proc. 794, 1987).Google Scholar
2. Abstreiter, G., Appl. Surf. Sci. 50, 73 (1991).Google Scholar
3. Aspnes, D.E. and Studna, A.A., Phys. Rev. B 27, 27 (1983).Google Scholar
4. Alterovitz, S.A., Snyder, P.G., Merkel, K.G., Woollam, J.A., Redulescu, D.C. and Eastman, L.F., J. Appl. Phys. 63, 5081 (1988).Google Scholar
5. Swart, P.L. and Lacquet, B.M., J. Electron. Mat. 19, 809 (1990).CrossRefGoogle Scholar
6. Swart, P.L. and Lacquet, B.M., J. Electron. Mat. 19, 1383 (1990).Google Scholar
7. Lacquet, B.M. and Swart, P.L., J. Electron. Mat. 20, 921 (1991).Google Scholar
8. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., J. Electron. Mat. 21, 1033 (1992).Google Scholar
9. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., Appl. Surf. Sci. 63, 249 (1993).Google Scholar
10. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., J. Electron. Mat. 22, 143 (1993).Google Scholar
11. Yeh, P., Optical Waves in Layered Media (John Wiley & Sons, New York, 1988)Google Scholar
12. Dunn, M.H., Appl. Opt. 10, 1393 (1971).CrossRefGoogle Scholar
13. Swart, P.L. and Lacquet, B.M., J. Appl. Phys. 70, 1069 (1991).Google Scholar
14. Adachi, S., J. Appl. Phys. 58, R1 (1985).Google Scholar
15. Lacquet, B.M. and Swart, P.L., J. Electron. Mat. 20, 379 (1991).CrossRefGoogle Scholar
16. Hubler, G.K., Malmberg, P.R., Waddell, C.N., Spitzer, W.G. and Fredrickson, J.E., Rad. Eff, 60, 35 (1982).CrossRefGoogle Scholar
17. Waddell, C.N., Spitzer, W.G., Hubler, G.K. and Fredrickson, J.E., J. Appl. Phys. 53, 5851 (1982).Google Scholar
18. Hubler, G.K., Malmberg, P.R. and Smith, T.P., J. Appl. Phys. 50, 7147 (1979).Google Scholar
19. Yu, Y., Fang, Z., Lin, C. and Zou, S., Mat. Lett. 8, 95 (1989).Google Scholar
20. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., Optics Letters (to be published).Google Scholar
21. Aizenberg, G.E., Swart, P.L. and Lacquet, B.M., S.A. J. of Phys. 16, 131 (1993).Google Scholar
22. Swart, P.L. and Lacquet, B.M., S.A. J. of Phys. 16, 118 (1993).Google Scholar
23. Colinge, J-P, Silicon-on-Insulator Technology: Materials to VLSI (Kluwer Academic Publishers, Boston, 1991).CrossRefGoogle Scholar
24. Vanhellemont, J. and Maes, H.E., Sol. State Phen. 6 & 7, 525 (1989).CrossRefGoogle Scholar
25. Palik, E.D., Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985) p.503.Google Scholar
26. Palik, E.D., Handbook of Optical Constants of Solids II (Academic Press, San Diego, 1991) p.140.Google Scholar
27. Gibbons, J.F., Johnson, W.S. and Mylroie, S.W., Proiected Range Statistics (Dowden, Hutchinson and Ross, Stroudsburg, Penn., 1975).Google Scholar