Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:47:18.299Z Has data issue: false hasContentIssue false

Characterization of Electron-Beam-Induced Silver Deposition from Liquid Phase

Published online by Cambridge University Press:  31 January 2012

Jonathan J. Park*
Affiliation:
Illinois Mathematics and Science Academy, 500 W. Sullivan Rd, Aurora, IL 60506.
Alexandra Joshi-Imre
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Ave., Argonne, IL 60439, U.S.A.
Leonidas E. Ocola
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Ave., Argonne, IL 60439, U.S.A.
Ralu Divan
Affiliation:
Center for Nanoscale Materials, Argonne National Laboratory, 9700 S-Cass Ave., Argonne, IL 60439, U.S.A.
*
Get access

Abstract

Electron-beam-induced deposition (EBID) using gas-phase precursor molecules is an extensively studied fabrication technique. Liquid-phase metal deposition has recently been shown to achieve higher purity levels than traditional gas-phase deposition [1]. The goal of this investigation was to characterize liquid-phase silver deposition for further studies in photonics. A Scanning Electron Microscope (SEM) (FEI Nova 600 NanoLab Dual Beam) was used to deposit silver on polyimide membranes from aqueous AgNO3 solution by accelerating electrons into the solution for silver ion reduction. Atomic Force Microscopy (AFM) and SEM were subsequently used to characterize the size dependence to electron dosage. We observed granular silver deposits with sub-75 nm particle size and 200-250 nm total aggregate diameters. The CASINO (monte CArlo SImulation of electroN trajectory in sOlids) program was used to model electron trajectory in the solution to relate the size to the electron spread.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schardein, G., Donev, E.U., and Hastings, J.T., Nanotechnology 22(1), 015301 (2011).Google Scholar
2. Feldheim, D.L. and Keating, C.D., Chem. Soc. Rev. 27, 1 (1998).Google Scholar
3. McConnell, W.P., Novak, J.P., Brousseau, L.C. III, Fuierer, R.R., Tenent, R.C., and Feldheim, D.L., J. Phys. Chem. B 104, 8925 (2000).Google Scholar
4. Li, H., Luk, Y.-Y., and Mrksich, M., Langmuir 15, 4957 (1999).Google Scholar
5. Liu, T., Tang, J., Zhao, H., Deng, Y., and Jiang, L., Langmuir 18, 5624 (2002).Google Scholar
6. Chen, W., Ahmed, H., and Nakazoto, K., Appl. Phys. Lett. 66(24), 3383 (1995).Google Scholar
7. Ma, Q., Mancini, D.C., and Rosenberg, R.A., Appl. Phys Letts. 75(15), 2274 (1999).Google Scholar
8. Fraser, David B. and Kammlott, G.W., U.S. Patent No. 4 072 768 (7 February 1978).Google Scholar
9. Craighead, H.G. and Schiavone, L.M., Appl. Phys. Lett. 48(25), 1748 (1986).Google Scholar
10. Stark, T.J., Mayer, T.M., Griffis, D.P., and Russell, P.E., J. Vac. Sci. Technol. B 9, 3475 (1991).Google Scholar
11. Donev, E.U. and Hastings, J.T., Nano Letters, 9(7), 27152718 (2009).Google Scholar
12. Donev, E.U. and Hastings, J.T., Nanotechnology 20(50), 505302 (2009).Google Scholar
13. Pai, Y.H. and Liu, G.R., J. Electrochem. Soc. 157(2), E13E18 (2010).Google Scholar
14. Roy, P., Lynch, R., and Schmuki, P., Electrochem. Commun. 11, 15671570 (2009).Google Scholar
15. Ma, Q., Moldovan, N., Mancini, D.C., and Rosenberg, R.A., Appl. Phys. Lett. 76(15), 20142016 (2000).Google Scholar
16. Divan, R., Ma, Q., Mancini, D.C., and Keane, D.T., ROMJIST 11(1), 7184 (2008).Google Scholar
17. Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R., Scanning 29(3), 92101 (2007).Google Scholar
18. Mahapatra, S.K., Dhole, S.D., Bhoraskar, V.N., and Raju, G.G., J. Appl. Phys. 100, 034913 (2006).Google Scholar