Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T08:10:51.847Z Has data issue: false hasContentIssue false

Characterization of Defect Structures in 3C-SiC Single Crystals Using Synchrotron White Beam X-ray Topography

Published online by Cambridge University Press:  15 February 2011

W. Huang
Affiliation:
Dept. of Materials Science and Engineering, SUNY at SB, Stony Brook, NY1 1794–2275
M. Dudley
Affiliation:
Dept. of Materials Science and Engineering, SUNY at SB, Stony Brook, NY1 1794–2275
C. Fazi
Affiliation:
U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
Get access

Abstract

Defect structures in (111) 3C-SiC single crystals, grown using the Baikov technique, have been studied using Synchrotron White Beam X-ray Topography (SWBXT). The major types of defects include complex growth sector boundary structures, double positioning twins, stacking faults on { 111 } planes, inclusions and dislocations (including growth dislocations and partial dislocations bounding stacking faults). Detailed stacking fault and double positioning twin configurations are determined using a combination of Nomarski interference microscopy, SEM and white beam x-ray topography in both transmission and reflection geometries. Possible defect generation phenomena are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nelson, E., Halden, F. A. and Rosengreen, A., J. Appl. Phys., 37, 333 (1966)Google Scholar
2. Fazi, C., Dudley, M., Wang, S. and Ghezzo, M., Inst. Phys. Conf. Ser., 137,487 (1994)Google Scholar
3. Harris, G. L., Jackson, K. H. et al, Materials Letters, 4, 77 (1986)Google Scholar
4. Shibahara, K., Saito, T. et al, IEEE Elcetron Devices Letters, DEL–7, 692 (1986)Google Scholar
5. Yoshida, S., Daimon, H. et al, J. Appl. Phys., 60, 2989 (1986)Google Scholar
6. Saddow, S. E., Lang, M. et al, Appl. Phys. Lett., 66, 3612 (1995)Google Scholar
7. Shields, V. B., Fekade, K. and Spencer, G., Appl. Phys. Lett., 62, 1919 (1993)Google Scholar
8. Dudley, M., Huang, W. et al, J. Phys. D: Appl. Phys., 28, A56 (1995)Google Scholar
9. Babovets, V. V., Inorganic Materials, 11,1623 (1975)Google Scholar
10. Bartlett, R. W. and Martin, G. W., J. Appl. Phys., 39, 2324 (1968)Google Scholar
11. Gorin, S. I., et al, in Growth of Crystals, edited by Sheftal, N. N., (New York 1968), P. 25Google Scholar
12. Gulden, T. D., J. of the American Ceramic Society, 54, 498 (1971)Google Scholar
13. Benaissa, M., Werckmann, J. et al, J. of Crysal Growth, 131, 5 (1993)Google Scholar
14. Power, J. A., Larkin, D. J. et al, in 1992 Amorphors and Crystalline Silicon Carbide IV, edited by Yang, C. Y. et al, (Berlin, springer), P. 23 Google Scholar
15. Aivazova, L. S., Nikolaeva, L. G. et al, Inorgainc Materials, 9, 133 (1973)Google Scholar
16. Aivazova, A. S., Gorin, S. N. et al, Inorganic Materials, 9, 1201 (1973)Google Scholar
17. Klapper, H., in Charaterization of Crystal Growth Defects by X-ray Methods, (Durham, England, 1979)Google Scholar