Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:01:54.559Z Has data issue: false hasContentIssue false

Characterization of an Asymmetric Triangular Multiple Quantum Well, by Variable Angle Spectroscopic Ellipsometry

Published online by Cambridge University Press:  28 February 2011

Craig M. Herzinger
Affiliation:
University of Nebraska, Dept. of Electrical Engineering and the Center for Microelectronic and Optical Materials Research, Lincoln, NE 68588-0511
Paul G. Snyder
Affiliation:
University of Nebraska, Dept. of Electrical Engineering and the Center for Microelectronic and Optical Materials Research, Lincoln, NE 68588-0511
John A. Woollam
Affiliation:
University of Nebraska, Dept. of Electrical Engineering and the Center for Microelectronic and Optical Materials Research, Lincoln, NE 68588-0511
Keith Evans
Affiliation:
Universal Energy Systems, 4401 Dayton-Xenia Rd., Dayton, OH 45432
C.E. Stutz
Affiliation:
Wright Research and Development Center, Wright-Patterson AFB, OH 45433-6543
R. Jones
Affiliation:
Wright Research and Development Center, Wright-Patterson AFB, OH 45433-6543
K.G. Merkel
Affiliation:
Wright Research and Development Center, Wright-Patterson AFB, OH 45433-6543
D.C. Reynolds
Affiliation:
Wright State University, University Research Center, Dayton, OH 45435
Get access

Abstract

Variable angle spectroscopic ellipsometry (VASE) was used to characterize a 20 period GaAs/Al(x)Ga(1-x)As multiple quantum well structure, grown by molecular beam epitaxy. The barriers were nominally 200 Å Al(.25)Ga(.75)As, and the well regions were grown to approximate a linearly graded composition, from x=0 to x=0.25, with total well width 200 Å. VASE data in the E1, E1,+Δ1. region were analyzed using four different models. It was founcЃ that the dielectric function of the cap GaAs layer was shifted to higher energy with respect to the bulk GaAs dielectric function.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Snyder, P. G., Rost, M. C., Bu-Abbud, G. H., Woollam, J. A. and Alterovitz, S. A., J. Appl. Phys. 60, 3293 (1986).Google Scholar
2Woollam, J. A., Snyder, P. G., McCormick, A. W., Rai, A. K., Ingram, D. C., Pronko, P. P. and Geddes, J. J., Mat. Res. Soc. Symop. Proc. 77, 755 (1987).Google Scholar
3Alterovitz, S. A., Snyder, P. G., Merkel, K. G., Woollam, J. A., Radulescu, D. C. and Eastman, L. F., J. Appl. Phys. 63, 5081 (1988).Google Scholar
4Merkel, K. G., Snyder, P. G., Woollam, J. A., Alterovitz, S. A. and Rai, A. K., Japanese J. Appl. Phys. 28, 1118 (1989).Google Scholar
5Snyder, P. G., Oh, J. E. and Woollam, J. A., Mat. Res. Soc. Symp. Proc. 77, 761 (1987).Google Scholar
6Snyder, P. G., Oh, J. E., Woollam, J. A. and Owens, R. E., Appl. Phys. Lett. 51, 770 (1987).Google Scholar
7Snyder, P. G., Merkel, K. G. and Woollam, J. A., SPIE Proc. 946, 98 (1988).Google Scholar
8Snyder, P. G., De, B. N., Merkel, K. G., Woollam, J. A., Langer, D. W., Stutz, C. E., Jones, R., Rai, A. K. and Evans, K., Superlattices and Microstructures 4, 97 (1988).Google Scholar
9Woollam, J. A., Snyder, P. G. and Rost, M. C., Thin Solid Films 166, 317 (1988).Google Scholar
10Bu-Abbud, G. H., Bashara, N. M. and Woollam, J. A., Thin Solid Films 138, 27 (1986).Google Scholar
11Aspnes, D. E., Kelso, S. M., Logan, R. A. and Bhat, R., J. Appl. Phys. 60, 754 (1986).Google Scholar
12Sanders, G. D. and Bajaj, K. K., J. Vac. Sci. Technol. B5, 1295 (1987).Google Scholar
13Vasquez, R. P., Kuroda, R. T. and Madhukar, A.Google Scholar