Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T15:54:31.681Z Has data issue: false hasContentIssue false

Characterization of a Dominant Electron Trap in GaNAs Using Deep-Level Transient Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Steven W. Johnston
Affiliation:
[email protected], National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO, 80401, United States, 303-384-6466, 303-384-6604
Sarah R. Kurtz
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Richard S. Crandall
Affiliation:
[email protected], National Renewable Energy Laboratory, United States
Get access

Abstract

Dilute-nitrogen GaNAs epitaxial layers grown by metal-organic chemical vapor deposition were characterized by deep-level transient spectroscopy (DLTS). For all samples, the dominant DLTS signal corresponds to an electron trap having an activation energy of about 0.25 to 0.35 eV. The minority-carrier trap density in the p-type material is quantified based on computer simulation of the devices. The simulations show that only about 2% of the traps in the depleted layer are filled during the transient. The fraction of the traps that are filled depends strongly on the depth of the trap, but only weakly on the doping of the layers and on the conduction-band offset. The simulations provide a pathway to obtain semi-quantitative data for analysis of minority-carrier traps by DLTS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, D. V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
2. Chen, K. M., Jia, Y. Q., Chen, Y., Li, A. P., Jin, S. X., and Liu, H. F., J. Appl. Phys. 78, 4261 (1995).Google Scholar
3. Kwon, D., Kaplar, R. J., and Ringel, S. A., Appl. Phys. Lett. 74, 2830 (1999).Google Scholar
4. Krispin, P., Spruytte, S. G., Harris, J. S., and Ploog, K. H., J. Appl. Phys. 89, 6294 (2001).Google Scholar
5. Krispin, P., Spruytte, S. G., Harris, J. S., and Ploog, K. H., Appl. Phys. Lett. 80, 2120 (2002).Google Scholar
6. Kaplar, R. J., Kwon, D., Ringel, S. A., Allerman, A. A., Kurtz, S. R., Jones, E. D., and Sieg, R. M., Sol. Energy Mater. Sol. Cells 69, 85 (2001).Google Scholar
7. Kurtz, S., Johnston, S. W., Geisz, J. F., Friedman, D. J., and Ptak, A. J., Thirty-First IEEE PVSC, 595 (2005).Google Scholar
8. Kurtz, S., Johnston, S., and Branz, H. M., Appl. Phys. Lett. 86, 113506 (2005).Google Scholar
9. Weiss, S. and Kassing, R., Solid-State Electron. 31, 1733 (1988).Google Scholar
10. Johnston, S. W. and Kurtz, S. R., unpublished.Google Scholar
11. Blood, P. and Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, San Diego, 1992).Google Scholar
12. Johnston, S. W., Kurtz, S. R., Friedman, D. J., Ptak, A. J., Ahrenkiel, R. K., and Crandall, R. S., Appl. Phys. Lett. 86, 072109 (2005).Google Scholar
13. Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
14. Martin, P. A., Streetman, B. G., and Hess, K., J. Appl. Phys. 52, 7409 (1981).Google Scholar