Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T06:58:29.430Z Has data issue: false hasContentIssue false

Characteristics of Pdai Schottky Contacts to n-GaAs

Published online by Cambridge University Press:  21 February 2011

T.S. Huang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of, China
J.G. Pang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of, China
Get access

Abstract

Metallurgical and electrical properties of β-phase PdAl Schottky metallizations on n-GaAs after rapid thermal annealing for 20 s in the temperature range 500-1000°C have been investigated using x-ray diffraction, transmission electron microscopy, Auger depth profiling and current-voltage measurement. The Al-rich contacts were stable up to 900°C, whereas the Pdrich contacts were less stable. The thermal stability of Pd-rich contacts decreased with increasing Pd composition, and interfacial reaction after high temperature annealing resulted in the formation of PdGa compound. The interface between Al-rich PdAI and GaAs substrate was quite sharp even after 900°C anneal. The Schottky barrier heights of Al-rich PdAl contacts increased with annealing temperature. The barrier height enhancement in the annealed Al-rich contacts can be attributed to the thin AlxGal−xAs layer formed at the interface between PdAl and GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Williams, R.E., Gallium Arsenide Processing Techniques, (ARTECH HOUSE, INC. 1984)Google Scholar
2. Lahav, A.G., Wu, C.S. and Baiocchi, F.A., J. Vac. Sci. Technol. B 6, 1785 (1988)Google Scholar
3. Yu, K.M., Jaklevic, J.M., Haller, E.E., Cheung, S.K. and Kwok, S.P., J. Appl. Phys. 64, 1284 (1988)Google Scholar
4. Nakamura, H., Sano, Y., Nonaka, T., Ishida, T. and Kaminishi, K., IEEE GaAs IC Symp. Tech. Dig. 1983, 134.Google Scholar
5. Sekino, Y., Kimura, T., Inokuchi, K., Sano, Y. and Sakuta, M., Jpn. J. Appl. Phys. 27, L2183 (1988)Google Scholar
6. Sands, T., Chan, W.K., Chang, C.C., Chase, E.W., and Keramidas, V.K., Appl. Phys. Lett. 52, 1388 (1988)Google Scholar
7. Blanpain, B., Wilk, G.D., Olowolafe, J.O., and Mayer, J.W., Appl. Phys. Lett. 57, 392 (1990)Google Scholar
8. Huang, T.S., Peng, J.G. and Lin, C.C., Appl. Phys. Lett. 61, 3017 (1992).Google Scholar
9. Huang, T.S., Peng, J.G. and Lin, C.C., J. Vac. Sci. Technol. B 11,756 (1993)Google Scholar
10. Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M. and Kelley, K.K., Selected Values of the Thermodynamic Properties of Binary Alloys, (Am. Phys. Soc., Metal Park, Ohio 1973)Google Scholar
11. Ettenberg, M., Komarek, K.L. and Miller, E., Metall. Trans. 2, 1173 (1971).CrossRefGoogle Scholar
12. Neumann, J.P., Chang, Y.A. and Lee, C.M., Acta Metall. 24, 593 (1976)Google Scholar
13. McAlister, A.J., Bulletin of Alloy Phase Diagrams, 7, 368 (1986)Google Scholar
14. Koster, U., Ho, P.S. and Ron, M., Thin Solid Films 67, 35 (1980)Google Scholar
15. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), pp. 38.Google Scholar
16. Eizenberg, M., Heiblum, M., Nathan, M.I., Braslau, N. and Mooney, P., J. Appl. Phys. 61, 1516 (1987).Google Scholar