Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T02:14:19.718Z Has data issue: false hasContentIssue false

Characterisation of Low Energy Boron Implantation and Fast Ramp-Up Rapid Thermal Annealing

Published online by Cambridge University Press:  10 February 2011

E. J. H. Collart
Affiliation:
Applied Materials, Implant Division. Foundry Lane, Horsham, W-Sussex RH13 5PY, England.
G. de Cock
Affiliation:
Applied Materials, Implant Division. Foundry Lane, Horsham, W-Sussex RH13 5PY, England.
A. J. Murrell
Affiliation:
Applied Materials, Implant Division. Foundry Lane, Horsham, W-Sussex RH13 5PY, England.
M. A. Foad
Affiliation:
Applied Materials, Implant Division. Foundry Lane, Horsham, W-Sussex RH13 5PY, England.
Get access

Abstract

The effects of ramp-up rate during rapid thermal processing of ultra-shallow boron implants have been investigated. Ramp-up rates were varied between 25 °C and 200 °C for two types of anneals: soak anneals and spike anneals. It was found that the ramp-up rate had very little influence on junction depth or electrical activation for both types of anneals. Spike anneals did produce shallower profiles than soak anneal for a comparable electrical activation and may be an option for future processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cowerm, N.E.B., Huizing, H.G.A., Stolk, P.A., Visser, C.C., de Kruif, R.C.M., Larsen, K. K. Kyllesbech, Privitera, V., Nanver, L.K., and Crans, W., Nucl. Instrum. Methods Phys. Res. B 120, 14 (1996).Google Scholar
[2] Cowern, N.E.B., van de Walle, G.F.A., Zalm, P.C., and Vandenhoudt, D.W.E., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
[3] Eaglesham, D.J., Stolk, P.A., Gossmann, H.-J., Haynes, T.E., and Poate, J.M., Nucl. Instrum. Methods Phys. Res. B 106, 191 (1995).Google Scholar
[4] Jones, K.S., Prussin, S., and Weber, E.R., Appl. Phys. A: Solid Surf. 45 1 (1988).Google Scholar
[5] Armigliato, A., Nobili, D., Ostoja, P., Servidori, M., and Solmi, S., in Semiconductor Silicon 1977, edited by Huff, H. and Sirtl, E. (The elctrochemical Society, Princeton, NJ, 1977), Vol.77-2, p. 638.Google Scholar
[6] Michel, A.E., Rausch, W., Ronsheim, P.A., and Kastl, R.H., Appl. Phys. Lett. 50, 416 (1987).Google Scholar
[7] Cowern, N.E.B., Janssen, K.T.F., and Jos, H.F.F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
[8] Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Jacobson, D.C., Haynes, T.E., Jackson, J., Erokhim, Y.E., and Poate, J.M., in Proc. Of the Fourth Int. Workshop on Meas. Charact. and Modelling of Ultra-shallow Doping Prof in Semiconductors, Research Triangle Park 1997 Google Scholar
[9] Collart, E.J.H., Heijdra, M., Weemers, K., Tamminga, Y., van Berkum, J.G.M., and Verheijen, M., to be presented at the IIT 98, Kyoto, Japan, June 1998.Google Scholar
[10] Collart, E.J.H., Weemers, K., Gravesteijn, D.J., and van Berkum, J.G.M., J. Vac. Sci. Technol. B 16, 280 (1998).Google Scholar
[11] Jones, K.S., in Rapid Thermal Processing, chapter 5, ed. Fair, R.B., Academic Press Inc. (1993).Google Scholar
[12] Fair, R.B., IEEE Trans. Electron Dev. 37, 2237 (1990).Google Scholar
[13] Krasnobaev, Y., Omelyanovskaya, N.M., and Makarov, V.V., J. Appl. Phys. 74, 6020 (1993).Google Scholar
[14] Todorov, S.S., Downey, D.F., Daryanani, S.L., Chow, J., Meloni, M., and Marcus, S.D., in Proc. of the 5th Int. Conf On Advanced Thermal Processing os Semiconductors-RTP '97,Google Scholar