Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:33:14.717Z Has data issue: false hasContentIssue false

Chaos and Force Fluctuations in Frictional Dynamics

Published online by Cambridge University Press:  10 February 2011

M. G. Rozman
Affiliation:
Institute of Physics, Riia 142, EE2400 Tartu, Estonia
J. Klafter
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv, Israel
M. Urbakh
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv, Israel
Get access

Abstract

A model is presented of a particle that interacts with two periodic potentials, representing two confining plates, one of which is externally driven. The model leads to various behaviors in the motion of the top driven plate: stick-slip, intermittent regime, characterized by force fluctuations, and two types of sliding above a critical driving velocity vc. Similar behaviors are typical of a broad range of systems including thin sheared liquids. A detailed analysis of the different regimes displays a transition between the stick-slip and the kinetic regimes, ω−2 power spectra of the force over a wide range of velocities below vc, and a decrease of the force fluctuations that follows (vcv)½ for v < vc. The velocity dependent Liapunov exponents demonstrate that the stick-slip motion is characterized by a chaotic behavior of the top plate and the embedded particle. An extension of the model to an embedded chain is introduced and preliminary results are presented and confronted with the single particle case. The role of the internal excitations of the chain in frictional dynamics is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshizawa, H., McGuiggan, P., and Israelachvili, J., Science 259, 1305 (1993).Google Scholar
2. Reiter, G., Demirel, L., and Granick, S., Science 263, 1741 (1994).Google Scholar
3. Thompson, P. A. and Robbins, M. O., Science 250, 792 (1990).Google Scholar
4. Thompson, P. A., Robbins, M. O., and Grest, G. S., Isr. J. of Chem. 35, 93 (1995).Google Scholar
5. Robbins, M. O., Thompson, P. A., and Grest, G. S., MRS Bull. 18, 45 (1993).Google Scholar
6. Carlson, J. M., Langer, J. S., and Shaw, B. E., Rev. Mod. Phys. 66, 657 (1994).Google Scholar
7. Persson, B. N. J., Phys. Rev. B 50, 4771 (1994).Google Scholar
8. Braiman, Y., Family, F., and Hentschel, G., Phys. Rev. E 53, R3005 (1996).Google Scholar
9. Carlson, J. M. and Batista, A. A., Phys. Rev. E 53, 4153 (1996).Google Scholar
10. Persson, B. N. J., Chem. Phys. Lett. 254, 114 (1996).Google Scholar
11. Feder, H. J. S. and Feder, J., Phys. Rev. Lett. 66, 2669 (1991), 67, 283E (1991).Google Scholar
12. Bak, P., Tang, C., and Wiesenfeld, K., Phys. Rev. Lett. 59, 381 (1987).Google Scholar
13. Elmer, F. J. in Physics of Sliding Friction, edited by Persson, B. N. J. and Tosatti, E., Kluwer, Dordrecht, 1996, pp. 433447.Google Scholar
14. Rozman, M. G., Urbakh, M., and Klafter, J., Phys. Rev. Lett. 77, 683 (1996).Google Scholar
15. Hu, H.-W., Carson, G. A., and Granick, S., Phys. Rev. Lett. 66, 2758 (1991).Google Scholar
16. Urbakh, M., Daikhin, L., and Klafter, J., J. Chem. Phys. 103, 10707 (1995).Google Scholar
17. Johansen, A. et al., Phys. Rev. E 48, 4779 (1993).Google Scholar
18. Demirel, A. L. and Granick, S., 1996, to appear in Phys. Rev. Lett.Google Scholar
19. Rozman, M. G., Urbakh, M., and Klafter, J., Phys. Rev. E 54, No. 6 (December 1996).Google Scholar
20. Elmer, F. J., private communication.Google Scholar