Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:35:45.515Z Has data issue: false hasContentIssue false

Changing the Structural State of Amorphous Silicon by Ion Irradiation

Published online by Cambridge University Press:  25 February 2011

S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407,1089 SJ Amsterdam, The Netherlands.
W.C. Sinke
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407,1089 SJ Amsterdam, The Netherlands.
J.M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
D.C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
S. Dierker
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
B.S. Dennis
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
D.J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.
F. Spaepen
Affiliation:
Harvard University, Cambridge, MA 02138, USA
Get access

Abstract

Ion beams of keV and MeV energies have been used to bombard amorphous Si (a-Si), which had previously been annealed (‘relaxed’). Analysis by Raman spectroscopy and differential scanning calorimetry shows that when 1 out of every 20 Si atoms is displaced by a nuclear collision, the a-Si returns to its unrelaxed state and cannot be distinguished from as implanted a-Si. Moreover, the kinetics of the heat release on annealing of similarly bombarded crystalline Si (c-Si) are qualitatively identical to those of structural relaxation in a-Si. This implies that the population of ion beam induced defects in a-Si is very similar to that in c-Si. It also shows that defect annihilation is an important ingredient in the mechanism of structural relaxation of a-Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Hubler, G.K., Donovan, E.P., Wang, K.W. and Spitzer, W.G., Soc. Photo-Optical Instr. Eng. Vol. 530, 222 (1985), and E.P. Donovan, G.K. Hubler and C.N. Waddell, Nucl. Instrum. and Meth. B19/20, 590 (1987).Google Scholar
2 Alben, R., Weaire, D., Smith, J.E. Jr., and Brodsky, M.H., Phys. Rev. B11, 2271 (1975).Google Scholar
3 Spitzer, W.G., Hubler, G.K. and Kennedy, T.A., Nucl. Instrum. and Meth. 209/210, 309 (1983).Google Scholar
4 Tsu, R., Hernandez, J.G. and Pollak, R.H., Sol. State. Commun. 54, 447 (1985).Google Scholar
5 Sinke, W.C., Warabisako, T., Miyao, M., Tokuyama, T., Roorda, S. and Saris, F.W., J. Non-Cryst. Solids 99, 308 (1988).Google Scholar
6 Roorda, S., Doom, S., Sinke, W.C., Scholte, P.M.L.O. and van Loenen, E., Phys. Rev. Lett. 62, 1880 (1989).Google Scholar
7 Donovan, E.P., Spaepen, F., Poate, J.M. and Jacobson, D.C., Appl. Phys. Lett. 55, 1516 (1989)Google Scholar
8 Sinke, W.C., Roorda, S. and Saris, F.W., J. Mater. Res. 3, 120 (1988).Google Scholar
9 Roorda, S., Poate, J.M., Jacobson, D.C., Eaglesham, D.J., Dennis, B.S., Sinke, W.C. and Spaepen, F., submitted, and: S. Roorda, J.M. Poate, D.C. Jacobson, B.S. Dennis, S. Dierker and W.C. Sinke, submitted.Google Scholar
10 Custer, J.S., Thompson, M.O., Poate, J.M., Jacobson, D.C., Roorda, S., Sinke, W.C. and Spaepen, F., These Proceedings.Google Scholar
11 Roorda, S., Poate, J.M, Jacobson, D.C., Fuoss, P., Dennis, B.S., Dierker, S., Sinke, W.C. and Spaepen, F., These Proceedings.Google Scholar
12 Biersack, J.P. and Haggmark, L.J., Nucl. Instrum. and Meth. 174, 257 (1980).Google Scholar
13 Point Defects in Solids, edited by Crawford, J.H. and Slifkin, L.M. (Plenum, New York, 1975) Vol. 2, p 4.Google Scholar
14 Bennett, C.H., Chaudhari, P., Moruzzi, V. and Steinhardt, P., Phil. Mag. A40, 485 (1979).Google Scholar